Skip to main content
Log in

Obtaining electrostatically bound CdS-SiO2 aggregates from electrophoretic concentrates of CdS nanoparticles

  • Physical Chemistry of Nanoclusters and Nanomaterials
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Nonaqueous electrophoresis reveals that the electrokinetic potential of CdS nanoparticles increases slightly (85–120 mV) along with the concentration (0–5 × 10−3 M) of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in n-decane, while negatively charged SiO2 particles acquire positive charge (switching from −75 up to +135 mV). The energies of interparticle interactions in CdS-CdS and CdS-SiO2 systems are calculated from these parameters and the literature values of the Hamaker constants according to the Deryaguin-Landau-Verwey-Overbeek (DLVO) theory. It is concluded that the presence of a minimum (2.5 k B T) on the potential dependences of the CdS-SiO2 system indicates the formation of CdS-SiO2 aggregates electrostatically bound by heterocoagulation at low concentrations of AOT. The luminescent properties of the obtained ultrafine CdS-SiO2 powders depend on the CdS content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Rempel’, Vestn. Ural. Otd. RAN 32(2), 45 (2010).

    Google Scholar 

  2. G. Zhu, F. Su, T. Lv, L. Pan, and Z. Sun, Nanoscale Res. Lett. 5, 1749 (2010).

    Article  CAS  Google Scholar 

  3. H. Chen, L. Zhu, H. Liu, and W. Li, J. Phys. Chem. 117, 3739 (2013).

    Article  CAS  Google Scholar 

  4. A. G. Kudashov, T. G. Leonova, V. S. Kurenya, V. S. Danilovich, L. G. Bulusheva, S. V. Larionov, and A. V. Okotrub, Russ. Chem. Bull. 59, 1720 (2010).

    Article  CAS  Google Scholar 

  5. P. Kamat, Acc. Chem. Res. 45, 1906 (2012).

    Article  CAS  Google Scholar 

  6. V. G. Talalaev, A. A. Tonkikh, N. D. Zakharov, A. V. Senichev, J. W. Tomm, P. Werner, B. V. Novikov, L. V. Asryan, B. Fuhrmann, J. Schilling, H. S. Leipner, A. D. Bouraulev, Yu. B. Samsonenko, A. I. Khrebtov, I. P. Soshnikov, and G. E. Cirlin, Semiconductors 46, 1460 (2012).

    Article  CAS  Google Scholar 

  7. E. Guliants, R. Schwarb, H. Bearbower, J. Gord, and C. Bunker, Rev. Adv. Mater. Sci. 10, 289 (2005).

    CAS  Google Scholar 

  8. L. M. Nikolenko and V. F. Razumov, Russ. Chem. Rev. 82, 429 (2013).

    Article  Google Scholar 

  9. M. Genovese, I. Lightcap, and P. Kamat, ACS Nano 6, 865 (2012).

    Article  CAS  Google Scholar 

  10. R. Teixeira and S. Bon, Adv. Polym. Sci. 233, 19 (2010).

    Article  CAS  Google Scholar 

  11. I. López, A. Vázquez, and I. Gómez, Key Eng. Mater. 50, 95 (2012).

    Article  Google Scholar 

  12. T. Nakanishi, B. Ohtani, and K. Uosaki, J. Phys. Chem. 102, 1571 (1998).

    Article  CAS  Google Scholar 

  13. K. Yan, W. Chen, and S. Yang, J. Phys. Chem. 117, 92 (2013).

    CAS  Google Scholar 

  14. A. I. Bulavchenko and P. S. Popovetsky, Langmuir 26, 736 (2010).

    Article  CAS  Google Scholar 

  15. A. I. Bulavchenko, A. A. Sap’yanik, and M. G. Demidova, Russ. J. Phys. Chem. A 88, 509 (2014).

    Article  CAS  Google Scholar 

  16. S. P. Bardakhanov, A. I. Korchagin, N. K. Kuksanov, A. V. Lavrukhin, R. A. Salimov, S. N. Fadeev, and V. V. Cherepkov, Mater. Sci. Eng. B 132, 204 (2006).

    Article  CAS  Google Scholar 

  17. A. V. Delgado, F. Gonzalez-Caballero, R. J. Hunter, L. K. Koopal, and J. Lyklema, J. Colloid. Interface Sci. 309, 194 (2007).

    Article  CAS  Google Scholar 

  18. B. V. Derjaguin, N. V. Churaev, and V. M. Muller, Surface Forces (Consultants Bureau, New York, 1987), p. 398.

    Book  Google Scholar 

  19. J. Sun, B. V. Velamakanni, W. W. Gerberich, et al., J. Colloid Interface Sci. 280, 387 (2004).

    Article  CAS  Google Scholar 

  20. M. F. Hsu, E. R. Dufresne, and D. A. Weitz, Langmuir 21, 4881 (2005).

    Article  CAS  Google Scholar 

  21. A. P. Herrera, O. Resto, J. G. Brian, et al., Nanotecnology 16, 618 (2005).

    Article  CAS  Google Scholar 

  22. Colloids in Paints, Ed. by T. F. Tadros (Wiley-VCH, Weinheim, 2010), pp. 71–108.

    Google Scholar 

  23. Handbok of Applied Surface and Colloid Chemistry, Ed. by K. Holmberg (Wiley, New York, 2001), pp. 201–218.

    Google Scholar 

  24. S. Shankar, S. Chatterjee, and H. Sastry, Phys. Chem. Commun. 6(9), 36 (2003).

    Google Scholar 

  25. K. Nakanishi, Infrared Absorption Spectroscopy (Holden-Day, San Francisco, 1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Bulavchenko.

Additional information

Original Russian Text © A.I. Bulavchenko, A.A. Sap’yanik, M.G. Demidova, M.I. Rakhmanova, P.S. Popovetskii, 2015, published in Zhurnal Fizicheskoi Khimii, 2015, Vol. 89, No. 5, pp. 812–818.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulavchenko, A.I., Sap’yanik, A.A., Demidova, M.G. et al. Obtaining electrostatically bound CdS-SiO2 aggregates from electrophoretic concentrates of CdS nanoparticles. Russ. J. Phys. Chem. 89, 828–834 (2015). https://doi.org/10.1134/S0036024415050106

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024415050106

Keywords

Navigation