Skip to main content
Log in

Efficient Adsorption and Photocatalytic Degradation of Organic Pollutant by Ag3PO4/ZnO/Chitosan–Biochar Composites

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The combination of chitosan-biochar (CS-biochar) adsorbents and ZnO, Ag3PO4 photocatalysts is a promising scheme for organic pollutant removal. Hence, a novel efficient Ag3PO4/ZnO/CS-biochar adsorption–photocatalyst is successfully synthesized and characterized using powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FTIR), energy disperse spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and N2 adsorption–desorption. Photocatalytic experiments have shown that the Ag3PO4/ZnO/CS-biochar with higher adsorption and photocatalytic activity. The synergetic effects of CS-biochar, ZnO and Ag3PO4 have promoted organic pollutant adsorption, and all the Ag3PO4/ZnO/CS-biochar composites with different Ag3PO4 content exhibit excellent photocatalytic activity for MB and RhB degradation. The degradation efficiency of 29 wt %-Ag3PO4/ZnO/CS-biochar composite photocatalyst (0.5 g/L) for MB and RhB (20 mg/L) reaches 99% within ≈60 min, respectively. Excellent photocatalytic performance and recyclability, Ag3PO4/ZnO/ CS-biochar composite is expected to be an important material for solving environmental crisis. Finally, a possible photocatalytic degradation mechanism is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. D. Gautam, S. Kumari, B. Ram, et al., J. Environ. Chem. Eng. 6, 3889 (2018). https://doi.org/10.1016/j.jece.2018.05.029

    Article  CAS  Google Scholar 

  2. P. Xu, G. M. Zeng, D. L. Huang, et al., Sci Total Environ. 424, 1 (2012). https://doi.org/10.1016/j.scitotenv.2012.02.023

    Article  CAS  PubMed  Google Scholar 

  3. C. G. Lee, H. Javed, D. Zhang, et al., Environ. Sci. Technol. 52, 4285 (2018). https://doi.org/10.1021/acs.est.7b06508

    Article  CAS  PubMed  Google Scholar 

  4. C. Yang, L. Zhao, X. Lu, et al., Sci. Adv. Mater. 11, 366 (2019). https://doi.org/10.1166/sam.2019.3432

    Article  CAS  Google Scholar 

  5. H. F. Hu, L. Yang, Z. Lin, et al., Iran. Polym. J. 27, 253 (2018). https://doi.org/10.1007/s13726-018-0605-x

    Article  CAS  Google Scholar 

  6. K. S. Hileuskaya, M. E. Mashkin, A. N. Kraskouski, et al., Russ. J. Inorg. Chem. 66, 1128 (2021). https://doi.org/10.1134/S0036023621080064

    Article  CAS  Google Scholar 

  7. S. Z. Rogovina, L. A. Zhorina, A. L., et al., Polym. Sci., Ser. A 63, 804 (2021). https://doi.org/10.1134/S0965545X21060109

    Article  CAS  Google Scholar 

  8. S. Edson da Reis, D. S. Gorza Filipe, C. Graciela da Pedro, et al., J. Environ. Chem. Eng. 9, (2021). https://doi.org/10.1016/J.JECE.2020.104893

  9. P. F. Zhu, M. Hu, M. Duan, et al., J. Alloy. Compd. 840, 155714 (2020). https://doi.org/10.1016/j.jallcom.2020.155714

    Article  CAS  Google Scholar 

  10. X. P. Li, P. Xu, M. Chen, et al., Chem. Eng. J. 366, 339 (2019). https://doi.org/10.1016/j.cej.2019.02.083

    Article  CAS  Google Scholar 

  11. P. F. Zhu, M. Duan, and R. X. Wang, Colloids Surfaces A 602, 125118 (2020). https://doi.org/10.1016/j.colsurfa.2020.125118

    Article  CAS  Google Scholar 

  12. M. Hu, P. F. Zhu, and M. Liu, Colloids Surfaces A 628, 127235 (2021). https://doi.org/10.1016/j.colsurfa.2021.127235

    Article  CAS  Google Scholar 

  13. J. M. Ma, H. Z. Deng, and Z. Zhang, Colloids Surfaces A 632, 127774 (2022). https://doi.org/10.1016/j.colsurfa.2021.127774

    Article  CAS  Google Scholar 

  14. R. Zhang, L. Cai, and C. Zhao, Diamond Relat. Mater. 129, 109362 (2022). https://doi.org/10.1016/j.diamond.2022.109362

    Article  CAS  Google Scholar 

  15. T. Karami, H. Alijani, and M. Abdouss, J. Chem. Technol. Biotechnol. 97, 1747(2022). https://doi.org/10.1002/jctb.7045

    Article  CAS  Google Scholar 

  16. R. A. Ismail, K. I. Hassan, O. A. Abdulrazaq, et al., Mater. Sci. Semicond. Process. 10, 19 (2006). https://doi.org/10.1016/j.mssp.2006.12.001

    Article  CAS  Google Scholar 

  17. Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947 (2001). https://doi.org/10.1126/science.1058120

    Article  CAS  PubMed  Google Scholar 

  18. H. Vahdat Vasei, S. M. Masoudpanah, M. Adeli, et al., Mater. Res. Bull. 117, 72 (2019). https://doi.org/10.1016/j.materresbull.2019.04.024

    Article  CAS  Google Scholar 

  19. A. Pastor, J. Balbuena, M. Cruz-Yusta, et al., Chem. Eng. J. 368, 659 (2019). https://doi.org/10.1016/j.cej.2019.03.012

    Article  CAS  Google Scholar 

  20. A. Janotti and C. G. Van de Walle, Rep. Prog. Phys. 72, 126501(2009). https://doi.org/10.1088/0034-4885/72/12/126501

    Article  CAS  Google Scholar 

  21. M. Shekofteh-Gohari and A. Habibi-Yangjeh, Ceram. Int. 42, 15224 (2016). https://doi.org/10.1016/j.ceramint.2016.06.158

    Article  CAS  Google Scholar 

  22. Y. Shaveisi, S. Sharifnia, and E. Karamian, Int. J. Energy Res. 43, 4879 (2019). https://doi.org/10.1002/er.4644

    Article  CAS  Google Scholar 

  23. J. Zhang, X. Liu, Q.W. Liu, et al., Ceram. Int. 46, 106 (2020). https://doi.org/10.1016/j.ceramint.2019.08.239

    Article  CAS  Google Scholar 

  24. B. Boutra, N. Güy, M. Ozacar, et al., J. Magn. Magn. Mater. 497, 165994 (2020). https://doi.org/10.1016/j.jmmm.2019.165994

    Article  CAS  Google Scholar 

  25. M. Virginia, A. K. Sunitha, T. Riya, et al., Int. J. Electrochem. Sci. 14, 3752 (2019). https://doi.org/10.20964/2019.04.49

    Article  CAS  Google Scholar 

  26. Q. H. Liang, W. J. Ma, Y. Shi, Z. Li, and X. M. Yang, Cryst. Eng. Comm. 14, 2966 (2012). https://doi.org/10.20964/2019.04.49

    Article  CAS  Google Scholar 

  27. M. A. Messih, M. A. Ahmed, A. Soltan, et al., J. Phys. Chem. Solids 135, 109086 (2019). https://doi.org/10.1016/j.jpcs.2019.109086

    Article  CAS  Google Scholar 

  28. Z. G. Yi, J. H. Ye, et al., Nat. Mater. 9, 559 (2010). https://doi.org/10.1038/nmat2780

    Article  CAS  PubMed  Google Scholar 

  29. Y. P. Bi, S. X. Ouyang, Naoto Umezawa, et al., J. Am. Chem. Soc. 133, 6490 (2011). https://doi.org/10.1021/ja2002132

    Article  CAS  PubMed  Google Scholar 

  30. X. Q. Feng, X. F. Li, B. T. Su, et al., Colloids Surfaces A 648, 129114 (2022). https://doi.org/10.1016/j.colsurfa.2022.129114

    Article  CAS  Google Scholar 

  31. D. L. Jiang, T. Y. Wang, Q. Xu, et al., Appl. Catal. B 201, 617 (2017). https://doi.org/10.1016/j.apcatb.2016.09.001

    Article  CAS  Google Scholar 

  32. P. F. Zhu, Y. J. Chen, M. Duan, et al., Catal. Sci. Technol. 8, 3818 (2018). https://doi.org/10.1039/c8cy01087k

    Article  CAS  Google Scholar 

  33. J. Zhang, M. Yan, X. Z. Yuan, et al., J. Colloid Interface Sci. 529, 11(2018). https://doi.org/10.1016/j.jcis.2018.05.109

    Article  CAS  PubMed  Google Scholar 

  34. Y. J. Chen, P. F. Zhu, M. Duan, et al., Appl. Surf. Sci. 486, 198 (2019). https://doi.org/10.1016/j.apsusc.2019.04.232

    Article  CAS  Google Scholar 

  35. S. F. Chen, F. N. Liu, M. Z. Xu, et al., J. Colloid Interface Sci. 553, 613 (2019). https://doi.org/10.1016/j.jcis.2019.06.053

    Article  CAS  PubMed  Google Scholar 

  36. B. J. Sun, W. Zhou, H. Z. Li, et al., Adv. Mater. 30, 1804282 (2018). https://doi.org/10.1002/adma.201804282

    Article  CAS  Google Scholar 

  37. H. Liu, D. R. Li, X. L. Yang, et al., Mater. Technol. 34, 192 (2019). https://doi.org/10.1080/10667857.2018.1545391

    Article  CAS  Google Scholar 

  38. F. Chen, Q. Yang, X. Li, et al., Appl. Catal. B 200, 330 (2017). https://doi.org/10.1016/j.apcatb.2016.07.021

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Natural Science Foundation of Tianshui city (2020-FZJHK-3111, 2021-FZJHK-1302), College Teachers Innovation Fund project of Gansu Province (2023B-142) and the Scientific Research Project of Gansu Province (21JR11RE038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-qiang Feng.

Ethics declarations

The authors declare that there are no conflicts of interest regarding the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao-fang Li, Li, Rx. & Feng, Xq. Efficient Adsorption and Photocatalytic Degradation of Organic Pollutant by Ag3PO4/ZnO/Chitosan–Biochar Composites. Russ. J. Inorg. Chem. 68, 1386–1398 (2023). https://doi.org/10.1134/S0036023623601307

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623601307

Keywords:

Navigation