Skip to main content
Log in

Electrochemical Properties of the closo-Decaborate Anion [B10H10]2– and a New Method for Preparation of the [B20H18]2– Anion

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The work is devoted to the theoretical and experimental study of the electrochemical characteristics of the closo-decaborate anion. The regions of electrochemical transformations of the [B10H10]2– anion for non-aqueous solvents of different structures (acetonitrile, dichloromethane, and tetrahydrofuran) have been studied by the method of cyclic voltammetry. It has been shown that, under the conditions of anodic oxidation, a dimerization product, the [B20H18]2– anion, is formed. For the synthesis of octadecahydroeicosaborate anion, electrochemical synthesis has been used for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. M. Yan, Y. Kawamata, and P. S. Baran, Chem. Rev. 117, 13230 (2017). https://doi.org/10.1021/acs.chemrev.7b00397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ghiasi Reza, M. Rahimi, and P. R. Jamaat, Russ. J. Inorg. Chem. 65, 69 (2020). https://doi.org/10.1134/S0036023620010088

  3. A. X. Tian, Y. B. Fu, H. P. Ni, et al., Russ. J. Inorg. Chem. 65, 359 (2020). https://doi.org/10.1134/S0036023620030183

    Article  CAS  Google Scholar 

  4. Ming Zhao and Xiaoli Zhou, Russ. J. Inorg. Chem. 65, 1166 (2020). https://doi.org/10.1134/s0036023620080203

    Article  CAS  Google Scholar 

  5. X.-W. Liu, N.-Y. Liu, Y.-Q. Deng, et al., Russ. J. Inorg. Chem. 65, 1186 (2020). https://doi.org/10.1134/s0036023620080094

    Article  CAS  Google Scholar 

  6. A. V. Sonone, M. Shaikh, M. Farooqui, et al., Russ. J. Inorg. Chem. 65, 390 (2020). https://doi.org/10.1134/S003602362003016X

    Article  CAS  Google Scholar 

  7. I. N. Klyukin, A. S. Novikov, A. P. Zhdanov, et al., Mendeleev Commun. 30, 88 (2020). https://doi.org/10.1016/j.mencom.2020.01.029

    Article  CAS  Google Scholar 

  8. M. Keener, C. Hunt, T. G. Carroll, et al., Nature 577, 652 (2020). https://doi.org/10.1038/s41586-019-1926-4

    Article  CAS  PubMed  Google Scholar 

  9. V. V. Avdeeva, E. A. Malinina, A. V. Vologzhanina, et al., Inorg. Chim. Acta 509, 119693 (2020). https://doi.org/10.1016/j.ica.2020.119693

    Article  CAS  Google Scholar 

  10. S. P. Fisher, A. W. Tomich, S. O. Lovera, et al., Chem. Rev. 119, 8262 (2019). https://doi.org/10.1021/acs.chemrev.8b00551

    Article  CAS  PubMed  Google Scholar 

  11. A. V. Shmal’ko and I. B. Sivaev, Russ. J. Inorg. Chem. 64, 1726 (2019). https://doi.org/10.1134/S0036023619140067

    Article  Google Scholar 

  12. C. Nandi, S. Kar, M. Zafar, et al., Inorg. Chem. 59, 3537 (2020). https://doi.org/10.1021/acs.inorgchem.0c00122

    Article  CAS  PubMed  Google Scholar 

  13. H. Yan, D. Tu, J. Poater, et al., Angew. Chem., Int. Ed. Engl. (2020). https://doi.org/10.1002/anie.201915290

  14. M. H. Hsu, C. Y. Hsieh, M. Kapoor, et al., Bioorg. Chem. 98, 103729 (2020). https://doi.org/10.1016/j.bioorg.2020.103729

    Article  CAS  PubMed  Google Scholar 

  15. D. Olid, R. Nunez, C. Vinas, et al., Chem. Soc. Rev. 42, 3318 (2013). https://doi.org/10.1039/c2cs35441a

    Article  CAS  PubMed  Google Scholar 

  16. I. Viñas and C. Teixidor, Future Med. Chem. 5, 617 (2013). https://doi.org/10.4155/fmc.13.41

    Article  CAS  Google Scholar 

  17. I. B. Sivaev and V. V. Bregadze, Eur. J. Inorg. Chem., No. 11, 1433 (2009). https://doi.org/10.1002/ejic.200900003

  18. I. B. Sivaev, A. V. Prikaznov, and D. Naoufal, Collect. Czechoslov. Chem. Commun. 75, 1149 (2010). https://doi.org/10.1135/cccc2010054

    Article  CAS  Google Scholar 

  19. K. Y. Zhizhin, A. P. Zhdanov, and N. T. Kuznetsov, Russ. J. Inorg. Chem. 55, 2089 (2010). https://doi.org/10.1134/S0036023610140019

    Article  CAS  Google Scholar 

  20. A. A. Semioshkin, I. B. Sivaev, and V. I. Bregadze, Dalton Trans. 11, 977 (2008). https://doi.org/10.1039/b715363e

    Article  CAS  Google Scholar 

  21. Z. Laila, O. Yazbeck, F. A. Ghaida, et al., J. Organomet. Chem. 910, 121132 (2020). https://doi.org/10.1016/j.jorganchem.2020.121132

    Article  CAS  Google Scholar 

  22. A. P. Zhdanov, V. V. Voinova, I. N. Klyukin, et al., J. Clust. Sci. 2 (2019). https://doi.org/10.1007/s10876-019-01628-2

  23. V. K. Burianova, D. S. Bolotin, A. S. Mikherdov, et al., New J. Chem. 42, 8693 (2018). https://doi.org/10.1039/c8nj01018h

    Article  CAS  Google Scholar 

  24. A. V. Nelyubin, I. N. Klyukin, A. P. Zhdanov, et al., Russ. J. Inorg. Chem. 64, 1750 (2019). https://doi.org/10.1134/S0036023619140043

    Article  CAS  Google Scholar 

  25. A. P. Zhdanov, A. V. Nelyubin, I. N. Klyukin, et al., Russ. J. Inorg. Chem. 64, 841 (2019). https://doi.org/10.1134/S0036023619070180

    Article  CAS  Google Scholar 

  26. V. V. Avdeeva, M. I. Buzin, A. O. Dmitrienko, et al., Chem. A Eur. J. 23, 16819 (2017). https://doi.org/10.1002/chem.201703285

    Article  CAS  Google Scholar 

  27. M. F. Hawthorne, K. Shelly, and F. Li, Chem. Commun. 2, 547 (2002). https://doi.org/10.1039/b110076a

    Article  CAS  Google Scholar 

  28. E. Bernhardt, D. J. Brauer, M. Finze, et al., Angew. Chem., Int. Ed. Engl. 46, 2927 (2007). https://doi.org/10.1002/anie.200604077

    Article  CAS  Google Scholar 

  29. E. L. Muetterties, Inorg. Chem. 231, 1450 (1964).

    Google Scholar 

  30. R. L. Middaugh and F. J. Farha, Inorg. Chem., 4147 (1965).

  31. A. P. Schmitt and R. L. Middaugh, Inorg. Chem. 13, 163 (1974). https://doi.org/10.1021/ic50131a031

    Article  CAS  Google Scholar 

  32. D. B. G. Williams and M. Lawton, Org. Chem. 75, 8351 (2010). https://doi.org/10.1021/jo101589h

    Article  CAS  Google Scholar 

  33. M. F. Hawthorne, R. L. Pilling, and W. H. Knoth, Inorg. Synth., 16 (1967). https://doi.org/10.1002/9780470132401.ch6

  34. F. Neese, WIREs Comput. Mol. Sci. 2, 73 (2012). https://doi.org/10.1002/wcms.81

    Article  CAS  Google Scholar 

  35. T. Lu and F. Chen, J. Comput. Chem. 33, 580 (2011). https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  36. E. D. Glendening and J. K. Badenhoop, et al., NBO 7.0 (Theor. Chem. Inst., Univ. of Wisconsin, Madison, 2018).

  37. V. V. Avdeeva, E. A. Malinina, L. V. Goeva, et al., Dokl. Chem. 474, 141 (2017). https://doi.org/10.1134/S0012500817060052

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The research was carried out using the equipment of the Center for Collective Use of the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, functioning within the framework of the State Assignment of the Kurnakov Institute in the field of fundamental scientific research.

Funding

The study was supported by the Russian Foundation for Basic Research (project nos. 19-29-08047 and 20-33-70217).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. N. Klyukin or A. P. Zhdanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voinova, V.V., Klyukin, I.N., Novikov, A.S. et al. Electrochemical Properties of the closo-Decaborate Anion [B10H10]2– and a New Method for Preparation of the [B20H18]2– Anion. Russ. J. Inorg. Chem. 66, 295–304 (2021). https://doi.org/10.1134/S0036023621030190

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621030190

Keywords:

Navigation