Skip to main content
Log in

Role of Hydroxide Precipitation Conditions in the Formation of Nanocrystalline BiFeO3

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Nanocrystalline bismuth orthoferrite (BiFeO3) was prepared by soft chemistry. The hydroxide coprecipitation method was shown to influence the formation of nanocrystalline bismuth orthoferrite. Synthetic conditions were determined to prepare nanocrystalline BiFeO3 free of other phases of the Bi2O3–Fe2O3 system with a narrow crystallite-size distribution and the smallest crystallite size of about 6–7 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. A. K. Zvezdin and A. P. Pyatakov, Phys. Usp. 47, 416. https://doi.org/10.1070/PU2004v047n04ABEH001752

  2. X. Bai, J. Wei, B. Tian, et al., J. Phys. Chem. 120, 3595. https://doi.org/10.1021/acs.jpcc.5b09945

  3. L. Esmaili and A. Gholizadeh, Iranan J. Crystallogr. Mineral. 26, 1013 (2019). https://doi.org/10.29252/ijcm.26.4.1013

    Article  Google Scholar 

  4. G. Catalan and J. F. Scott, Adv. Mater. 21, 2463 (2009). https://doi.org/10.1002/adma.200802849

    Article  CAS  Google Scholar 

  5. A. N. Kalinkin and V. M. Skorikov, Russ. J. Inorg. Chem. 55, 1794 (2010). https://doi.org/10.1134/S0036023610110173

    Article  CAS  Google Scholar 

  6. A. P. Pyatakov and A. K. Zvezdin, Phys. Usp. 55, 557.

  7. A. V. Egorysheva, T. I. Milenov, O. G. Ellert, et al., Solid State Sci. 40, 31 (2015). https://doi.org/10.1016/j.solidstatesciences.2014.12.011

    Article  CAS  Google Scholar 

  8. M. I. Morozov, N. A. Lomanova, and V. V. Gusarov, Russ. J. Gen. Chem. 73, 1676 (2003). https://doi.org/10.1023/B:RUGС.0000018640.30953.70

    Article  CAS  Google Scholar 

  9. J. Silva, A. Reyes, H. Esparza, et al., Integr. Ferroelectr. 126 (1), 47 (2011). https://doi.org/10.1080/10584587.2011.574986

    Article  CAS  Google Scholar 

  10. V. M. Denisov, N. V. Belousova, V. P. Zhereb, et al. J. Siberian Federal University 5, 146 (2012). http://elib.sfu-kras.ru/handle/2311/3093.

  11. I. Sosnowska, T. P. Neumaier, and E. Streichele, J. Phys. C: Solid State Phys. 15, 4835 (1982). https://doi.org/10.1088/0022-3719/15/23/020

    CAS  Google Scholar 

  12. N. A. Lomanova, M. V. Tomkovich, A. V. Osipov, et al., Phys. Solid State 61, 2535 (2019). https://doi.org/10.1134/S1063783419120278

    Article  CAS  Google Scholar 

  13. R. Patel and P. Sawadh, Nanosyst.: Phys. Chem. Mater. 10, 255. https://doi.org/10.17586/2220-8054-2019-10-3-255-265

  14. F. Bai, J. Wang, M. Wuttig, et al., Appl. Phys. Lett. 86, 032511 (2005). https://doi.org/10.1063/1.1851612

    Article  Google Scholar 

  15. N. Sheoran, M. Saini, A. Kumar, et al., MRS Adv. 4, 1659 (2019). https://doi.org/10.1557/adv.2019.167

    Article  CAS  Google Scholar 

  16. N. A. Lomanova, V. V. Panchuk, V. G. Semenov, et al., Ferroelectrics, 569 (2020).

  17. S. M. Selbach, M.-A. Einarsrud, and T. Grande, Chem. Mater. 21, 169 (2009). https://doi.org/10.1021/cm802607p

    Article  CAS  Google Scholar 

  18. N. A. Lomanova and V. V. Gusarov, http://nanojournal.ifmo.ru/en/wp-content/uploads/2013/10/NPCM_ 45P696.pdf.

  19. N. A. Lomanova and V. V. Gusarov, Russ. J. Gen. Chem. 83, 2251 (2013). https://doi.org/10.1134/S1070363213120049

    Article  CAS  Google Scholar 

  20. A. V. Egorysheva, O. M. Gaitko, P. O. Rudnev, et al., Russ. J. Inorg. Chem. 60, 1304 (2015). https://doi.org/10.1134/S0036023615110042

    Article  CAS  Google Scholar 

  21. O. V. Proskurina, M. V. Tomkovich, A. K. Bachina, et al., Russ. J. Gen. Chem. 87, 2507 (2017). https://doi.org/10.1134/S1070363217110019

    Article  CAS  Google Scholar 

  22. J.-L. Ortiz-Quiñonez, U. Pal, and M. S. Villanueva, Inorg. Chem. 57, 6152 (2018). https://doi.org/10.1021/acs.inorgchem.8b00755

  23. O. V. Proskurina, I. V. Nogovitsin, T. S. Il’ina, et al., Russ. J. Gen. Chem. 88, 2139 (2018). https://doi.org/10.1134/S1070363218100183

    Article  CAS  Google Scholar 

  24. E. Gil-González, A. Perejón, P. E. Sánchez-Jiménez, et al., J. Mater. Chem. A 6 (13), 5356 (2018). https://doi.org/10.1039/C7TA09239C

    Article  Google Scholar 

  25. N. A. Lomanova, M. V. Tomkovich, V. V. Sokolov, and V. V. Gusarov, Russ. J. Gen. Chem. 86, 2256 (2016). https://doi.org/10.1134/S1070363216100030

    Article  CAS  Google Scholar 

  26. J. Peñalva and A. Lazo, IOP Conf. Series: J. Phys.: Conf. Ser. 1143, 012025 (2018). https://doi.org/10.1088/1742-6596/1143/1/012025

  27. N. A. Lomanova, M. V. Tomkovich, V. V. Sokolov, et al., J. Nanopart. Res. 20, 17 (2018). https://doi.org/10.1007/s11051-018-4125-6

    Article  Google Scholar 

  28. S. Ghosh, S. Dasgupta, A. Sen, and H. S. Maiti, J. Am. Ceram. Soc. 88, 1349 (2005). https://doi.org/10.1111/j.1551-2916.2005.00306.x

    Article  CAS  Google Scholar 

  29. A. V. Egorysheva, T. B. Kuvshinova, V. D. Volodin, et al., Inorg. Mater. 49, 310 (2013). https://doi.org/10.1134/S0020168513030035

    Article  CAS  Google Scholar 

  30. X. Sun, Z. Liu, H. Yu, et al., Mater. Lett. 219, 225 (2018). https://doi.org/10.1016/j.matlet.2018.02.052

    Article  CAS  Google Scholar 

  31. O. V. Proskurina, R. S. Abiev, D. P. Danilovich, et al., Chem. Eng. Process 143, 107598 (2019). https://doi.org/10.1016/j.cep.2019.107598

    Article  CAS  Google Scholar 

  32. E. V. Vladimirova, A. V. Dmitriev, and M. V. Kandaurov, Russ. J. Inorg. Chem. 64, 689 (2019). https://doi.org/10.1134/S0036023619060160

    Article  CAS  Google Scholar 

  33. S. M. Selbach, T. Tybell, M. A. Einarsrud, and T. Grande, Chem. Mater. 19, 6478 (2007). https://doi.org/10.1021/cm071827w

    Article  CAS  Google Scholar 

  34. V. I. Popkov, O. V. Almjasheva, A. S. Semenova, et al., J. Mater. Sci.: Mater. Electron. 28, 7163 (2017). https://doi.org/10.1007/s10854-017-6676-1

    CAS  Google Scholar 

  35. V. V. Gusarov, Russ. J. Gen. Chem. 67, 1846 (1997).

    CAS  Google Scholar 

  36. M. Missaoui, S. Coste, M. Barré, et al., Nanomaterials 10 (1), 26 (2020). https://doi.org/10.3390/nano10010026

    Article  CAS  Google Scholar 

  37. A. V. Egorysheva, V. D. Volodin, O. G. Ellert, et al., Inorg. Mater. 49, 303 (2013). https://doi.org/10.1134/S0020168513030023

    Article  CAS  Google Scholar 

  38. C. P. Fonte, M. A. Sultan, R. J. Santos, et al., Chem. Eng. J. 260, 316 (2015). https://doi.org/10.1016/j.cej.2014.08.090

    Article  CAS  Google Scholar 

  39. R. S. Abiev, Theoret. Found. Chem. Eng. 54 (6) (2020).

  40. O. V. Proskurina, E. V. Sivtsov, M. O. Enikeeva, et al., Nanosyst.: Phys. Chem. Mater. 10, 206 (2019). https://doi.org/10.17586/2220-8054-2019-10-2-206-214

  41. V. K. Ivanov, P. P. Fedorov, A. Y. Baranchikov, and V. V. Osiko, Russ. Chem. Rev. 83, 1204 (2014). https://doi.org/10.1070/RCR4453

    Article  CAS  Google Scholar 

  42. O. V. Almyasheva, N. A. Lomanova, V. I. Popkov, et al., Nanosyst.: Phys. Chem. Mater. 10, 428 (2019). https://doi.org/10.17586/2220-8054-2019-10-4-428-437

Download references

ACKNOWLEDGMENTS

X-ray diffraction experiments, scanning electron microscopy, and elemental analysis of the samples were performed on facilities of the Engineering Center of the St. Petersburg State Technological Institute (Technical University).

The transmission electron microscopic studies were carried out using the facilities of the Federal Center for Collective Use “Materials Science and Diagnostics in Advanced Technologies” in the Ioffe Physico-Technical Institute.

Funding

The work was supported by the Russian Scientific Foundation (project no. 16-13-10252).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Proskurina.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proskurina, O.V., Sokolova, A.N., Sirotkin, A.A. et al. Role of Hydroxide Precipitation Conditions in the Formation of Nanocrystalline BiFeO3 . Russ. J. Inorg. Chem. 66, 163–169 (2021). https://doi.org/10.1134/S0036023621020157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621020157

Keywords:

Navigation