Skip to main content
Log in

Selective Synthesis of Manganese Dioxide Polymorphs by the Hydrothermal Treatment of Aqueous KMnO4 Solutions

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The hydrothermal treatment of neutral and acidified KMnO4 solutions at concentration of 0.037–0.093 mol/L and temperature of 120, 170, and 220°С for 24 h leads to selective synthesis of three different manganese dioxide modifications: α-MnO2, δ-MnO2, and β-MnO2. The temperature of hydrothermal treatment and medium acidity has been shown to affect considerably the phase composition of KMnO4 reduction products and reaction yield. The obtained samples of MnO2 have been characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy, and diffuse reflectance spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. Parker, S. M. Webb, R. Verity, et al., Annu. Rev. Earth Planet. Sci. 32, 287 (2004). https://doi.org/10.1146/annurev.earth.32.101802.120213

    Article  CAS  Google Scholar 

  2. Y. D. Tretyakov, Russ. Chem. Rev. 73, 831 (2004). https://doi.org/10.1070/rc2004v073n09abeh000914

    Article  CAS  Google Scholar 

  3. M. Manickam, P. Singh, T. B. Issa, et al., J. Power Sources 130, 254 (2004). https://doi.org/10.1016/j.jpowsour.2003.12.018

    Article  CAS  Google Scholar 

  4. P. J. Gellings and H. J. M. Bouwmeester, Catal. Today 12, 1 (1992). https://doi.org/10.1016/0920-5861(92)80046-P

    Article  CAS  Google Scholar 

  5. J. Hu, T. W. Odom, and C. M. Lieber, Acc. Chem. Res. 32, 435 (1999). https://doi.org/10.1021/ar9700365

    Article  CAS  Google Scholar 

  6. A. G. Ivanova, L. V. Karasev, M. S. Masalovich, et al., Glass Phys. Chem. 46, 96 (2020). https://doi.org/10.1134/S1087659620010101

    Article  CAS  Google Scholar 

  7. J. E. Post, Proc. Natl. Acad. Sci. U.S.A. 96, 3447 (1999). https://doi.org/10.1073/pnas.96.7.3447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. M. M. Thackeray, Prog. Solid State Chem. 25, 1 (1997). https://doi.org/10.1016/S0079-6786(97)81003-5

    Article  CAS  Google Scholar 

  9. K. Luo, S. X. Zhao, and Y. F. Wang, New J. Chem. 42, 6770 (2018). https://doi.org/10.1039/c8nj00240a

    Article  CAS  Google Scholar 

  10. L. I. Hill, A. Verbaere, and D. Guyomard, J. Power Sources 119–121, 226 (2003). https://doi.org/10.1016/S0378-7753(03)00238-6

    Article  CAS  Google Scholar 

  11. W. N. Li, J. Yuan, X. F. Shen, et al., Adv. Funct. Mater. 16, 1247 (2006). https://doi.org/10.1002/adfm.200500504

    Article  CAS  Google Scholar 

  12. M. N. Brekhovskikh, S. K. Batygov, L. V. Moiseeva, et al., Inorg. Mater. 54, 1157 (2018). https://doi.org/10.1134/S0020168518110031

    Article  CAS  Google Scholar 

  13. M. N. Brekhovskikh, S. P. Solodovnikov, L. V. Moiseeva, et al., Inorg. Mater. 55, 710 (2019). https://doi.org/10.1134/S0020168519070045

    Article  CAS  Google Scholar 

  14. W. Sun, S. Ding, S. Zeng, et al., J. Hazard. Mater. 192, 124 (2011). https://doi.org/10.1016/j.jhazmat.2011.04.104

    Article  CAS  PubMed  Google Scholar 

  15. D. Wang, L. M. Liu, S. J. Zhao, et al., Phys. Chem. Chem. Phys. 15, 9075 (2013). https://doi.org/10.1039/c3cp50392e

    Article  CAS  PubMed  Google Scholar 

  16. G. A. Buzanov, N. P. Simonenko, K. Y. Zhizhin, et al., Russ. J. Inorg. Chem. 64, 1335 (2019). https://doi.org/10.1134/S0036023619110044

    Article  CAS  Google Scholar 

  17. G. A. Buzanov, N. P. Simonenko, K. Y. Zhizhin, et al., Russ. J. Inorg. Chem. 64, 1482 (2019). https://doi.org/10.1134/S0036023619120040

    Article  CAS  Google Scholar 

  18. J. Song, H. Li, S. Li, et al., New J. Chem. 41, 3750 (2017). https://doi.org/10.1039/c6nj04118c

    Article  CAS  Google Scholar 

  19. V. Subramanian, H. Zhu, and B. Wei, J. Power Sources 159, 361 (2006). https://doi.org/10.1016/j.jpowsour.2006.04.012

    Article  CAS  Google Scholar 

  20. R. N. Reddy and R. G. Reddy, J. Power Sources 124, 330 (2003). https://doi.org/10.1016/S0378-7753(03)00600-1

    Article  CAS  Google Scholar 

  21. S. P. Fedosova, Growth of Crystals 9, 62 (1975).

    Google Scholar 

  22. K. B. Sharipov, A. D. Yapryntsev, A. E. Baranchikov, et al., Russ. J. Inorg. Chem. 62, 139 (2017). https://doi.org/10.1134/S0036023617020164

    Article  CAS  Google Scholar 

  23. K. Byrappa and M. Yoshimura, Handbook of Hydrothermal Technology (Elsevier, 2013) p. 615.

    Google Scholar 

  24. S. Komarneni, Q. Li, K. M. Stefansson, and R. Roy, J. Mater. Res. 8, 3176 (1993). https://doi.org/10.1557/JMR.1993.3176

    Article  CAS  Google Scholar 

  25. P. E. Meskin, A. E. Baranchikov, V. K. Ivanov, et al., Inorg. Mater. 40, 1058 (2004). https://doi.org/10.1023/b:inma.0000046468.73127.f5

    Article  CAS  Google Scholar 

  26. P. E. Meskin, A. E. Baranchikov, V. K. Ivanov, et al., Dokl. Chem. 389, 62 (2003). https://doi.org/10.1023/A:1022978107113

    Article  CAS  Google Scholar 

  27. P. E. Meskin, A. I. Gavrilov, V. D. Maksimov, et al., Russ. J. Inorg. Chem. 52, 1648 (2007). 10.1134/S003602360711002

    Article  Google Scholar 

  28. V. K. Ivanov, V. D. Maksimov, A. S. Shaporev, et al., Russ. J. Inorg. Chem. 55, 150 (2010). https://doi.org/10.1134/S0036023610020026

    Article  CAS  Google Scholar 

  29. R. F. Korotkov, A. E. Baranchikov, O. V. Boytsova, et al., Russ. J. Inorg. Chem. 61, 129 (2016). https://doi.org/10.1134/S0036023616020091

    Article  CAS  Google Scholar 

  30. H. Pan, X. Chen, O. Sanz, et al., Chin. J. Catal. 40, 940 (2019). https://doi.org/10.1016/S1872-2067(19)63339-5

    Article  CAS  Google Scholar 

  31. R. F. Korotkov, A. E. Baranchikov, O. V. Boytsova, and V. K. Ivanov, Russ. J. Inorg. Chem. 60, 1299 (2015). https://doi.org/10.1134/s0036023615110108

    Article  CAS  Google Scholar 

  32. S. Birgisson, D. Saha, and B. B. Iversen, Cryst. Growth Des. 18, 827 (2018). https://doi.org/10.1021/acs.cgd.7b01304

    Article  CAS  Google Scholar 

  33. X. Zhang, B. Li, C. Liu, et al., Mater. Res. Bull. 48, 2696 (2013). https://doi.org/10.1016/j.materresbull.2013.03.025

    Article  CAS  Google Scholar 

  34. R. Parsons, J. Electroanal. Chem. 13, 471 (1967). https://doi.org/10.1016/0022-0728(67)80059-7

    Article  Google Scholar 

  35. H. Cao, B. Wei, B. Yu, et al., Proc. Int. Conf. Adv. Fibers Polym. Mater. 2, 1302 (2009). https://doi.org/10.1002/chin.200523238

  36. N. Tang, X. Tian, C. Yang, et al., Mater. Res. Bull. 44, 2062 (2009).

    Article  CAS  Google Scholar 

  37. N. Xu, Z. H. Liu, X. Ma, et al., J. Nanoparticle Res. 11, 1107 (2009). https://doi.org/10.1007/s11051-008-9517-6

    Article  CAS  Google Scholar 

  38. B. R. Chen, W. Sun, D. A. Kitchaev, et al., Nat. Commun. 9, 2553 (2018). https://doi.org/10.1038/s41467-018-04917-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. X. Zhang, W. Yang, J. Yang, and D. G. Evans, J. Cryst. Growth 310, 716 (2008). https://doi.org/10.1016/j.jcrysgro.2007.11.113

    Article  CAS  Google Scholar 

  40. X. Zhang, P. Yu, D. Wang, and Y. Ma, J. Nanosci. Nanotechnol. 10, 898 (2010). https://doi.org/10.1166/jnn.2010.1893

    Article  CAS  PubMed  Google Scholar 

  41. T. Gao, H. Fjellvåg, and P. Norby, Nanotecnology 20, 055610 (2009). https://doi.org/10.1088/0957-4484/20/5/055610

    Article  CAS  Google Scholar 

  42. W.-H. Kao, J. Electrochem. Soc. 136, 13 (2006). https://doi.org/10.1149/1.2096574

    Article  Google Scholar 

  43. C. Julien, M. Massot, R. Baddour-Hadjean, et al., Solid State Ionics 159, 345 (2003). https://doi.org/10.1016/S0167-2738(03)00035-3

    Article  CAS  Google Scholar 

  44. C. Julien, M. Massot, and C. Poinsignon, Spectrochim. Acta A 60, 689 (2003). https://doi.org/10.1016/s1386-1425(03)00279-8

    Article  Google Scholar 

  45. T. Gao, H. Fjellvag, and P. Norby, Anal. Chim. Acta 648, 235 (2009). https://doi.org/10.1016/j.aca.2009.06.059

    Article  CAS  PubMed  Google Scholar 

  46. F. Buciuman, F. Patcas, R. Craciun, and D. R. T. Zahn, Phys. Chem. Chem. Phys. 1, 185 (1999). https://doi.org/10.1039/a807821a

    Article  CAS  Google Scholar 

  47. W. Li, X. Cui, R. Zeng, et al., Sci. Rep. 5, 8987 (2015). https://doi.org/10.1038/srep08987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. A. M. Toufiq, F. Wang, and Q. U. A. Javed, J. Nanosci. Nanotechnol. 13, 2948 (2013). https://doi.org/10.1166/jnn.2013.7408

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 16-13-10339) using facility of the Shared Facility Center, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, supported by the State Assignment for the Kurnakov Institute of General and Inorganic Chemistry, RAS, in the field of fundamental research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Baranchikov.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by I. Kudryavtsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorova, A.A., Bushkova, T.M., Kolesnik, I.V. et al. Selective Synthesis of Manganese Dioxide Polymorphs by the Hydrothermal Treatment of Aqueous KMnO4 Solutions. Russ. J. Inorg. Chem. 66, 146–152 (2021). https://doi.org/10.1134/S0036023621020066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621020066

Keywords:

Navigation