We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

On Selection of Matrix (Wasteform) Material for Higher Activity Nuclear Waste Immobilization (Review)

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Selection of wasteform materials for higher activity nuclear waste containment is considered. Utilization of materials such as glasses, ceramics, glass composite materials and cements is discussed as practiced in different countries. Emphasis is on multiple parameter approach on selecting the wasteform where the durability is not solely the most important characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. IAEA Nucl. En. Ser. No. NW-G-1.1 (2009).

  2. M. I. Ojovan, Handbook of Advanced Radioactive Waste Conditioning Technologies (Woodhead, Cambridge, 2011).

    Book  Google Scholar 

  3. W. Lutze and R. C. Ewing, Radioactive Waste Forms for the Future (Elsevier, Amsterdam, 1988).

    Google Scholar 

  4. IAEA Techn. Rept Ser., No. 345 (1992).

  5. National Research Council. Waste Forms Technology and Performance: Final Report (National Acad. Press, Washington, DC, 2011).

  6. IAEA TECDOC-1817: Selection of Technical Solutions for the Management of Radioactive Waste (IAEA, Vienna, 2017).

  7. W. E. Lee, M. I. Ojovan, M. C. Stennett, et al., Adv. Appl. Ceram. 105, 3 (2006).

    Article  CAS  Google Scholar 

  8. IAEA TECDOC-1537: Strategy and Methodology for Radioactive Waste Characterization (IAEA, Vienna, 2007)

  9. W. L. Ebert, Testing Protocols to Support Waste Form Development, Production, and Acceptance, U.S. DOE Report GNEP-WAST-WAST-AI-RT-2008-000302 (September 2008).

  10. M. I. Ojovan and W. E. Lee, An Introduction to Nucl. Waste Immobilisation (Elsevier, Amsterdam, 2013).

    Google Scholar 

  11. C. M. Jantzen, K. G. Brown, and J. B. Pickett, Int. J. Appl. Glass Sci. 1, 38 (2010).

    Article  CAS  Google Scholar 

  12. C. M. Jantzen, C. L. Crawford, J. M. Pareizs, et al., US DOE Report SRNL-STI-2014-00274 (2014).

  13. C. M. Jantzen, C. L. Crawford, J. M. Pareizs et al., US DOE Report SRNL-STI-2014-00381 (2014).

  14. M. I. Ojovan and W. E. Lee, Metall. Mater. Trans. A, 42, 837 (2011).

    Article  CAS  Google Scholar 

  15. W. E. Lee, M. I. Ojovan, and C. M. Jantzen, Radioactive Waste Management and Contaminated Site Clean-up: Processes, Technologies and International Experience (Woodhead, Oxford, UK, 2013).

    Book  Google Scholar 

  16. R. A. Kerr, Science 204, 289 (1979).

    Article  CAS  PubMed  Google Scholar 

  17. R. A. Kerr, Science 205, 287 (1979).

    Article  Google Scholar 

  18. D. R. Clarke, J. Am. Ceram. Soc. 64, C-89 (1981).

    CAS  Google Scholar 

  19. Z. Zhang and M. L. Carter, J. Am. Ceram. Soc. 93, 894 (2010).

    Article  CAS  Google Scholar 

  20. W. J. Buykx, K. Hawkins, D. M. Levins, et al., J. Am. Ceram. Soc. 71, 678 (1988).

    Article  CAS  Google Scholar 

  21. J. A. Cooper, D. R. Cousens, J. A. Hanna, et al., J. Am. Ceram. Soc. 69, 347 (1986).

    Article  CAS  Google Scholar 

  22. C. M. Jantzen, D. R. Clarke, P.E.D. Morgan, et al., J. Am. Ceram. Soc. 65, 292 (1982).

    Article  CAS  Google Scholar 

  23. J. D. Vienna, in Properties of Glass Forming Melts, Ed. by L. D. Pye, I. Joseph, and A. Montenaro (CRC, Boca Raton, FL, 2005), p. 391.

    Google Scholar 

  24. D. E. Day, R. K. Brow, C. S. Ray, et al., Proc. Waste Manag. paper #12240 Phoenix, AZ (2012).

  25. D. E. Day, Z. Wu, C. S. Ray, et al., J. Non-Cryst. Solids 241, 1 (1998).

    Article  CAS  Google Scholar 

  26. C. W. Kim, C. S. Ray, D. Zhu, et al., J. Nucl. Mater. 322,152 (2003).

    Article  CAS  Google Scholar 

  27. C. W. Kim, D. Zhu, D. E. Day, et al., Iron Phosphate Glass for Immobilization of Hanford LAW. Environmental Issues and Waste Management Technologies in the Ceramic & Nuclear Industries IX (Am. Ceram. Soc., Westerville, OH, 2004), p. 309.

    Google Scholar 

  28. P. Sengupta J. Hazardous Mater. 235236, 17 (2012).

  29. D. Caurant, P. Loiseau, O. Majerus, et al., Glasses, Glass-Ceramics and Ceramics for Immobilization of Highly Radioactive Nucl.Wastes (Nova, New York, 2009).

    Google Scholar 

  30. E. Vernaz, Nucl. Waste Conditioning. CEA Monograph, CEA Saclay and Groupe Moniteur(Éditions du Moniteur) (Paris, 2009).

    Google Scholar 

  31. C. M. Jantzen, in Handbook of Advanced Radioactive Waste Conditioning Technologies, Ed. by M. Ojovan (Woodhead, Oxford, 2011), p. 230.

    Google Scholar 

  32. R. C. Ewing, Proc. Natl. Acad. Sci. USA 96, 3432 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. R. C. Ewing, Canad. Mineral. 39, 697 (2001).

    Article  CAS  Google Scholar 

  34. R.C. Ewing, W. J.Weber, and J. Lian, J. Appl. Phys. 95, 5949 (2004).

    Article  CAS  Google Scholar 

  35. G. R. Lumpkin, J. Nucl. Mater. 289, 136 (2001).

    Article  CAS  Google Scholar 

  36. G. R. Lumpkin, Elements 2, 365, (2006).

    Article  CAS  Google Scholar 

  37. I. W. Donald, B. L. Metcalfe, and R. N. J. Taylor, J. Mater. Sci. 32, 5851 (1997).

    Article  CAS  Google Scholar 

  38. I. W. Donald, Waste Immobilization in Glass and Ceramic Based Hosts (Wiley, London, 2010).

    Book  Google Scholar 

  39. S. V. Yudintsev, S. V. Stefanovsky, and R. C. Ewing, in Structural Chemistry of Inorganic Actinide Compounds, Ed. by S. V. Krivovichev, P. C. Burns, and I. Tananaev (Elsevier, Amsterdam, 2007), Chapter 13.

    Google Scholar 

  40. R. C. Ewing and W. J. Weber, in The Chemistry of the Actinide and Transactinide Elements (Springer, Amsterdam, 2011), Vol. 6.

    Google Scholar 

  41. S. V. Stefanovsky, S. V. Yudintsev, R. Giere, et al., Geol. Soc. London Spec. Publ. 236, 37 (2004).

    Article  CAS  Google Scholar 

  42. M. T. Peters and R. C. Ewing, J. Nucl. Mater. 362, 395 (2007).

    Article  CAS  Google Scholar 

  43. B. E. Burakov, M. I. Ojovan, and W. E. Lee, Crystalline Materials for Actinide Immobilization (Imperial College Press, London, 2011).

    Book  Google Scholar 

  44. M. I. Ojovan and W. E. Lee, New Developments in Glassy Nucl.Waste Forms (Nova, New York, 2007).

    Google Scholar 

  45. N. Henry, P. Deniard, S. Jobic, et al., J. Non-Cryst. Solids 333, 199 (2004).

    Article  CAS  Google Scholar 

  46. IAEA TECDOC-1791. The Behaviour of Cementitious Mater. in Long Term Storage and Disposal of Radioactive Waste, IAEA, Vienna, (2013).

  47. R. O. Abdel Rahman, R. Z. Rahimov, N. R. Rahimova, et al., Cementitious Mater. for Nuclear Waste Immobilization (Wiley, Chichester, 2015).

    Google Scholar 

  48. M. B. Volf, Chemical Approach to Glass, Glass Science and Technology (Elsevier, New York, 1984), Vol. 7.

    Google Scholar 

  49. S. Gin, P. Jollivet, M. Tribet, et al., Radiochim. Acta 105, 927 (2017).

    Article  CAS  Google Scholar 

  50. M. James, M. L.Carter, Z. Ahang, et al., J. Am. Ceram. Soc. 93, 3464 (2010).

    Article  CAS  Google Scholar 

  51. W. J. Weber, R. C. Ewing, C. R. A. Catlow, et al., J. Mater. Res. 13, 1434 (1998).

    Article  CAS  Google Scholar 

  52. P. J. Hayward, in Radioactive Waste Forms for the Future, Ed. by W. Lutze and R. C. Ewing (Elsevier, Amsterdam, 1988).

    Google Scholar 

  53. G. J. McCarthy, Nucl. Technol. 32, 92 (1977).

    Article  CAS  Google Scholar 

  54. A. R. Boccaccini, E. Bernardo, L. Blain, et al., J. Nucl. Mater. 327, 148 (2004).

    Article  CAS  Google Scholar 

  55. J. M. Juoi, M. I. Ojovan, and W. E. Lee, J. Nucl. Mater. 372, 358 (2008).

    Article  CAS  Google Scholar 

  56. I. A. Sobolev, M. I. Ojovan, T. D. Scherbatova, et al., Glasses for Radioactive Waste (Energoatomizdat, Moscow, 1999).

    Google Scholar 

  57. I. A. Sobolev, S. A. Dmitriev, F. A. Lifanov, et al., Glass Technol. 46, 28 (2005).

    CAS  Google Scholar 

  58. D. S. Kim, D. E. Smith, J. D. Vienna, et al., Development and Testing of ICV Glasses for Hanford LAW. US DOE Report PNNL-14351, Pacific Northwest National Laboratory, Richland, Washington, (2003).

  59. T. J. Garino, T. M. Nenoff, J. L. Krumhansl, et al., J. Am. Ceram. Soc. 94, 2412 (2011).

    Article  CAS  Google Scholar 

  60. O. Farid, K. Shih, W. E. Lee, et al., in Radioactive Waste Management and Contaminated Site Clean-up: Processes, Technologies and International Experience, Ed. by W. E. Lee, M. I. Ojovan, and C. M. Jantzen (Woodhead, UK, 2013).

    Google Scholar 

  61. M. L. D. Gougar, B. E. Scheetz, and D. M. Roy, Waste Manag. 16, 295 (1996).

    Article  CAS  Google Scholar 

  62. P. G. Allen, G. S. Siemering, D. K. Shuh, et al., Radiochim. Acta 76, 77 (1997).

    Article  CAS  Google Scholar 

  63. F. Bart, C. Cau-Di-Coumes, F. Frizon, et al., Cement-Based Materials for Nuclear Waste Storage (Springer, New York, 2013).

    Book  Google Scholar 

  64. R. D. Spence, Chemistry and Microstructure of Solidified Waste Forms (CRC, 1992).

    Google Scholar 

  65. R. Noyes, Nuclear Waste Cleanup Technology and Opportunities (Noyes Publications, Park Ridge, NJ, 1995).

    Google Scholar 

  66. W. E. Lee and R. W. Grimes, En. Mater. 1, 22 (2006).

  67. N. B. Milesone, Adv. Appl. Ceram. 105, 13 (2006).

    Article  CAS  Google Scholar 

  68. E. R. Vance and D. S. Perera, in Handbook of Advanced Radioactive Waste Conditioning Technologies, Ed. by M. I. Ojovan (Woodhead, Cambridge, UK, 2011).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors acknowledge contribution to this overview of W.E. Lee, A.I. Orlova, S.V. Stefanovsky, F. Takats, and late E.R. Vance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Ojovan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jantzen, C.M., Ojovan, M.I. On Selection of Matrix (Wasteform) Material for Higher Activity Nuclear Waste Immobilization (Review). Russ. J. Inorg. Chem. 64, 1611–1624 (2019). https://doi.org/10.1134/S0036023619130047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023619130047

Keyword:

Navigation