Skip to main content
Log in

Electronic structure of boron nitride nanotubes intercalated with transition metals

  • Theoretical Inorganic Chemistry
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The electronic structure of semiconductor (5,5) boron nitride nanotubes intercalated with 3d metals has been studied by quantum-chemical methods. The linear augmented-cylindrical-wave method has been used for calculating the total and partial densities of electronic states as a function of metal concentration and nature and the structure of the carbon shell. Metallized nanowires based on (5,5) BN nanotubes with one, two, three, and four metal atoms in the cross section have been calculated. The introduction of metals is accompanied by the insulator-to-metal transition of the nanotubes. For forty inorganic materials, we have determined the total densities of states of the valence band and the conduction band and the density of states at the Fermi level, which determines the concentration of free electrons that can be involved in ballistic charge transport in the nanotube. The introduction of metals not only has an effect on the conductive state of the boron nitride nanotube but also change the whole pattern of the valence band of the nanotube, in particular, increases the valence band width by 2–10 eV owing to the low-energy shift of the boron and nitrogen states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. G. Chopra, R. J. Luyken, K. Cherrey, et al., Science 269, 966 (1995).

    Article  CAS  Google Scholar 

  2. A. Loiseau, F. Willaime, N. Demoncy, et al., Phys. Rev. 76, 4737 (1996).

    CAS  Google Scholar 

  3. O. L. Louchev, Appl. Phys. 24, 3522 (1996).

    Google Scholar 

  4. A. Loiseau, BN NT, Carbon 5–6, 743 (1998).

    Article  Google Scholar 

  5. Y. Saito, M. Maida, and T. Matsumoto, Jpn. J. Appl. Phys. 38, 159 (1999).

    Article  CAS  Google Scholar 

  6. Y. Saito and M. Maida, J. Phys. Chem. A 103, 1291 (1999).

    Article  CAS  Google Scholar 

  7. J. Cumings and A. Zettl, Chem. Phys. Lett. 316, 211 (2000).

    Article  CAS  Google Scholar 

  8. D. P. Yu, Appl. Phys. Lett. 16, 1966 (1998).

    Article  Google Scholar 

  9. J. Yu, Appl. Phys. Lett. 77(13), 1949 (2000).

    Article  CAS  Google Scholar 

  10. W. Zhou, Z. Zhang, Z. G. Bai, and D. P. Yu, Solid State Commun. 109, 555 (1999).

    Article  CAS  Google Scholar 

  11. P. Gleize, M. C. Schouler, P. Gadelle, and M. Caillet, J. Mater. Sci. 29, 1575 (1994).

    Article  CAS  Google Scholar 

  12. M. Terauchi, M. Tanaka, H. Matsuda, et al., J. Electron Microsc. 46, 75 (1997).

    Article  CAS  Google Scholar 

  13. Y. Chen, J. F. Gerald, J. S. Williams, and S. Bulcock, Chem. Phys. Lett. 299, 260 (1999).

    Article  CAS  Google Scholar 

  14. Y. Chen, L. Chadderton, J. FitzGerald, J. S. Williams, Appl. Phys. Lett. 74, 2960 (1999).

    CAS  Google Scholar 

  15. D. Golberg, Y. Bando, M. Eremets, et al., Appl. Phys. Lett. 69, 2045 (1996).

    Article  CAS  Google Scholar 

  16. W. Han, Y. Bando, K. Kurashima, and T. Sato, Appl. Phys. Lett. 73, 3085 (1998).

    Article  CAS  Google Scholar 

  17. M. Terauchi, M. Tanaka, T. Matsumoto, and Y. Saito, J. Electron Microsc. 47, 319 (1998).

    Article  CAS  Google Scholar 

  18. J. Cumings and A. Zettl, Chem. Phys. Lett. 316, 211 (2000).

    Article  CAS  Google Scholar 

  19. N. G. Chopra and A. Zettl, Solid State Commun. 105, 297 (1998).

    Article  CAS  Google Scholar 

  20. A. Rubio, J. Corkill, and M. L. Cohen, Phys. Rev. B 49, 5081 (1994).

    Article  CAS  Google Scholar 

  21. D. V. Kirin and P. N. D’yachkov, Dokl. Phys. Chem. 373(1–3), 115 (2000).

    Google Scholar 

  22. P. N. D’yachkov and D. V. Makaev, J. Phys. Chem. Solids 70, 180 (2000).

    Article  Google Scholar 

  23. M. T. Baei, Y. Kanani, V. J. Rezaei, and A. Soltani, Appl. Surf. Sci. 295, 18 (2014).

    Article  CAS  Google Scholar 

  24. A. Soltani, A. V. Moradi, M. Bahari, et al., Physica B: Condens. Matter 430, 20 (2013).

    Article  CAS  Google Scholar 

  25. C. Zhi, S. Ueda, H. Zeng, et al., J. Appl. Phys. 114, 054306 (2013).

    Article  Google Scholar 

  26. Y. F. Zhukovskii, S. Piskunov, J. Kazerovskis, et al., J. Phys. Chem. C 117, 14235 (2013).

    Article  CAS  Google Scholar 

  27. Y. F. Zhukovskii, S. Piskunov, J. Begens, and J. Kazerovskis, Phys. Stat. Solidi (B) 250, 793 (2013).

    Article  CAS  Google Scholar 

  28. M. Sun, J. Xu, Y. Cui, et al., Adv. Mater. Res. 662, 233 (2013).

    Article  CAS  Google Scholar 

  29. S. Ebrahimi-Nejad, A. Shokuhfar, A. HosseiniSadegh, and A. Zare-Shahabadi, Phys. E 48, 53 (2013).

    Article  Google Scholar 

  30. M. Sun, G. Wu, T. Ye, et al., Adv. Mater. Res. 399–401, 2215 (2012).

    Google Scholar 

  31. E. P. D’yachkov, L. O. Khoroshavin, I. A. Bochkov, et al., Russ. J. Inorg. Chem. 59, 683 (2014).

    Article  Google Scholar 

  32. P. N. D’yachkov, Electronic Properties and Application of Nanotubes (Binom/Laboratoriya znanii, Moscow, 2011) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. D’yachkov.

Additional information

Original Russian Text © I.A. Bochkov, E.P. D’yachkov, P.N. D’yachkov, 2014, published in Zhurnal Neorganicheskoi Khimii, 2014, Vol. 59, No. 12, pp. 1701–1708.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bochkov, I.A., D’yachkov, E.P. & D’yachkov, P.N. Electronic structure of boron nitride nanotubes intercalated with transition metals. Russ. J. Inorg. Chem. 59, 1454–1461 (2014). https://doi.org/10.1134/S0036023614120080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023614120080

Navigation