Skip to main content
Log in

Thermolysis of disubstituted lithium and sodium orthoperiodates

  • Synthesis and Properties of Inorganic Compounds
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Na2H3IO6 decomposes with water and oxygen evolution in the range of 180–250°C under the atmospheric pressure or in a dynamic vacuum. The solid residue is an equimolar mixture of NaIO3 and Na3IO5. Na3IO5 likely occurs in the form of the dimer Na6I2O10. An intermediate thermolysis stage is the elimination of a water molecule from the salt molecule with simultaneous disproportionation of the salt to trisubstituted orthoperiodate and metaperiodate: Na2H3IO6 = 0.5Na3H2IO6 + 0.5NaIO4 + H2O. Li2H3IO6 thermolysis under the atmospheric pressure proceeds in the same way; however in vacuum, the thermolysis yields LiIO3 and Li5IO6 in the ratio of 3: 1 (mol/mol). The reason for the different thermolysis routes lies in the different stability of the intermediates M3H2IO6 and MIO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Siebert, Z. Anorg. Allg. Chem. 303, 162 (1960).

    Article  CAS  Google Scholar 

  2. H. Siebert, Z. Anorg. Allg. Chem. 304, 266 (1960).

    Article  CAS  Google Scholar 

  3. M. Jansen and A. Rehr, Z. Anorg. Allg. Chem. 567, 95 (1988).

    Article  CAS  Google Scholar 

  4. M. Jansen and T. Kraft, Z. Anorg. Allg. Chem. 620, 53 (1994).

    Article  CAS  Google Scholar 

  5. M. Dratovskii, Zh. Neorg. Khim. 8(1), 2434 (1963).

    Google Scholar 

  6. M. Dratovsky, Collection 29(3), 579 (1964).

    CAS  Google Scholar 

  7. N. I. Nikitina and Z. K. Nikitina, Zh. Neorg. Khim. 49(9), 1450 (2004) [Russ. J. Inorg. Chem. 49 (9), 1338 (2004)].

    CAS  Google Scholar 

  8. G. V. Shilov, Z. K. Nikitina, Yu. A. Dobrovol’skii, et al., Koord. Khim. 30(7), 483 (2004).

    Google Scholar 

  9. B. Brehler, H. Jacobi, and H. Siebert, Z. Anorg. Allg. Chem. 362, 301 (1968).

    Article  CAS  Google Scholar 

  10. M. Dratovsky, V. Kožišec, and B. Strauch, Collection 36(11), 3810 (1971).

    CAS  Google Scholar 

  11. J. Bousquet and J.-C. David, Bull. Soc. Chim. Fr., 11, 3169 (1965).

    Google Scholar 

  12. D. G. Lemesheva and V. Ya. Rosolovskii, Zh. Neorg. Khim. 23(8), 2055 (1978).

    CAS  Google Scholar 

  13. G. N. Tarasova and E. E. Vinogradov, Zh. Neorg. Khim. 39(1), 148 (1994).

    Google Scholar 

  14. H. Dolling and M. Trömel, Naturwiss. 60(3), 153 (1973).

    Article  Google Scholar 

  15. H. Dolling and M. Trömel, Z. Anorg. Allg. Chem. 411, 49 (1975).

    Article  Google Scholar 

  16. I. Jonas and L. Pačesova, Collection 31(11), 4385 (1966).

    CAS  Google Scholar 

  17. I. Jonas and L. Pačesova, Collection 31(12), 4718 (1966).

    CAS  Google Scholar 

  18. A. Trnoska, E. Nachbaur, and F. Belaj, J. Solid State Chem. 113(2), 393 (1994).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.I. Nikitina, Z.K. Nikitina, 2007, published in Zhurnal Neorganicheskoi Khimii, 2007, Vol. 52, No. 4, pp. 535–541.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikitina, N.I., Nikitina, Z.K. Thermolysis of disubstituted lithium and sodium orthoperiodates. Russ. J. Inorg. Chem. 52, 479–485 (2007). https://doi.org/10.1134/S0036023607040031

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023607040031

Keywords

Navigation