Skip to main content
Log in

Population Status of Two Wedgefish Species in Western Indonesian Inner Waters, Inferred from Demographic Models with Limited Data

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

Wedgefish (family Rhinidae) is a group of elasmobranchs that experience a global threat due to its highly valued fins. Similar condition happens to most species of wedgefish inhabiting Indonesian waters where fishing activities are intense without sufficient management controls and lack of supporting studies on their sustainabilities. In order to get a picture of wedgefish populations in Indonesia, the current study employing demographic analysis was performed to know the population status of two wedgefish species (Rhynchobatus australiae and Rhina ancylostoma) from western Indonesian waters (including the Java Sea, Karimata and southern Makassar Straits). Age-based matrix models were used involving two scenarios of populations with and without fishing. Monte carlo simulation was applied to incorporate uncertainties in life-history parameters. The results show contrasting productivities for R. australiae and R. ancylostoma. R. australiae is sufficiently productive, indicated by high population growth rates in both with and without fishing scenarios. In contrast, the population of R. ancylostoma grows positively only in the unfished scenario, but the growth is negative in the with-fishing scenario. This finding indicates that the current level of exploitation caused the depletion in the population of R. ancylostoma. The current level of fishing can be maintained for R. australiae to give optimum benefits to fishery communities, while for R. ancylostoma, substantial reduction in fishing is required. Protection of young fish (juveniles up to age at first reproduction) is recommended in both fish since population growths are very sensitive to the changes in these stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Alverson, D.L. and Carney, M.J., A graphic review of the growth and decay of population cohorts, ICES J. Mar. Sci., 1975, vol 36, no. 2, pp. 133–143. https://doi.org/10.1093/icesjms/36.2.133

    Article  Google Scholar 

  2. Berec, L., Angulo, E., and Courchamp, F., Multiple Allee effects and population management, Trends Ecol. Evol., 2007, vol. 22, no. 4, pp. 185–191. https://doi.org/10.1016/j.tree.2006.12.002

    Article  PubMed  Google Scholar 

  3. Blaber, S.J.M., Dichmont, C.M., White, W., Buckworth, R., Sadiyah, L., Iskandar, B., Nurhakim, S., Pillans, R., Andamari, R., Dharmadi, and Fahmi, Elasmobranchs in southern Indonesian fisheries: the fisheries, the status of the stocks and management options, Rev. Fish. Biol. Fish., 2009, vol. 19, pp. 367–391. https://doi.org/10.1007/s11160-009-9110-9

    Article  Google Scholar 

  4. Borrell, A., Cardona, L., Kumarran, R.P., and Aguilar, A., Trophic ecology of elasmobranchs caught off Gujarat, India, as inferred from stable isotopes, ICES J. Mar. Sci., 2011, vol. 68, no. 3, pp. 547–554. https://doi.org/10.1093/icesjms/fsq170

    Article  Google Scholar 

  5. Braccini, M., Molony, B., and Blay, N., Patterns in abundance and size of sharks in northwestern Australia: cause for optimism, ICES J. Mar. Sci., 2020, vol. 77, no. 1, pp. 72–82. https://doi.org/10.1093/icesjms/fsz187

    Article  Google Scholar 

  6. Bradshaw, C.J.A., Prowse, T.A.A., Drew, M., Gillanders, B.M., Donnellan, S.C., and Huveneers, C, Predicting sustainable shark harvests when stock assessments are lacking, ICES J. Mar. Sci., 2018, vol. 75, no. 5, pp. 1591–1601. https://doi.org/10.1093/icesjms/fsy031

    Article  Google Scholar 

  7. Campana, S.E., Ferretti, F., and Rosenberg, A., Sharks and other elasmobranchs, in The First Global Integrated Marine Assessment: World Ocean Assessment I, Inniss, L., et al., Eds., Cambridge: Cambridge Univ. Press, 2017, pp. 781–788. https://doi.org/10.1017/9781108186148.050

  8. Cortés, E., Life history patterns and correlations in sharks, Rev. Fish. Sci., 2000, vol. 8, no. 4, pp. 299–344. https://doi.org/10.1080/10408340308951115

    Article  Google Scholar 

  9. Cortés, E., Incorporating uncertainty into demographic modeling: application to shark populations and their conservation, Conserv. Biol., 2002, vol. 16, pp. 1048–1062. https://doi.org/10.1046/j.1523-1739.2002.00423.x

    Article  Google Scholar 

  10. Cortés, E., An overview of approaches used to assess the status of shark populations: experiences from the US and ICCAT in the Atlantic Ocean, in The 7th Session of The Working Party on Ecosystems and Bycatch, Victoria: Indian Ocean Tuna Comm., 2011.

  11. D’Alberto, B.M., Carlson, J.K., Pardo, S.A., and Simpfendorfer, C.A., Population productivity of shovelnose rays: inferring the potential for recovery, PLoS One, 2019, vol. 14, no. 11, art. ID e0225183. https://doi.org/10.1371/journal.pone.0225183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Devadoss, P. and Batcha, H., Some observations on the rare bow-mouth guitarfish Rhina ancylostoma, Mar. Fish. Inf. Serv., 1995, vol. 138, pp. 10–11.

    Google Scholar 

  13. Dharmadi, Fahmi, and White, W.T., Biodiversity of sharks and rays in south eastern Indonesia, Indones. Fish. Res. J., 2009, vol. 15, no. 2, pp. 17–28. https://doi.org/10.15578/ifrj.15.2.2009.17-28

  14. Dulvy, N.K., Fowler, S.L., Musick, J.A., Cavanagh, R.D., Kyne, P.M., Harrison, L.R., Carlson, J.K., Davidson, L.N.K., Fordham, S.V., Francis, M.P., Pollock, C.M., Simpfendorfer, C.A., Burgess, G.H., Carpenter, K.E., Compagno, L.J.V., et al., Extinction risk and conservation of the world’s sharks and rays, eLife, 2014, vol. 3, art. ID e00590.

    Article  Google Scholar 

  15. Dulvy, N.K. and Reynolds, J.D., Predicting extinction vulnerability in skates, Conserv. Biol., 2002, vol. 16, pp. 440–450. https://doi.org/10.1046/j.1523-1739.2002.00416.x

    Article  Google Scholar 

  16. Elzhov, T.V., Mullen, K.M., Spiess, A.-N., and Bolker, B., minpack.lm: R interface to the Levenberg-Marquardt nonlinear least-squares algorithm found in MINPACK, plus support for bounds, R package version 1.2-1, 2016. https://CRAN.R-project.org/package=minpack.lm.

  17. Fahmi, Dharmadi, Sarmintohadi, Mustika, C., Dermawan, A., Sadili, D., Suharsono, and Kasasiah, A., A Review of the Status of Shark Fisheries and Shark Conservation in Indonesia, Jakarta: Dir. Mar. Aquat. Resour. Conserv., Dir. Gen. Mar., Coasts Small Islands, Ministry Mar. Aff. Fish., 2013.

    Google Scholar 

  18. Frisk, M.G., Miller, T.J., and Fogarty, M.J., Estimation and analysis of biological parameters in elasmobranch fishes: a comparative life history study, Can. J. Fish. Aquat. Sci., 2001, vol. 58, pp. 969–981. https://doi.org/10.1139/f01-051

    Article  Google Scholar 

  19. Froese, R. and Binohlan, C., Empirical relationships to estimate asymptotic length, length at first maturity and length at maximum yield per recruit in fishes, with a simple method to evaluate length frequency data, J. Fish Biol., 2000, vol. 56, pp. 758–773. https://doi.org/10.1111/j.1095-8649.2000.tb00870.x

    Article  Google Scholar 

  20. Garcia, V.B., Lucifora, L.O., and Myers, R.A., The importance of habitat and life history to extinction risk in sharks, skates, rays and chimaeras, Proc. R. Soc. B, 2008, vol. 275, pp. 83–89. https://doi.org/10.1098/rspb.2007.1295

    Article  PubMed  Google Scholar 

  21. Gedamke, T., Hoenig, J., Musick, J.A., DuPaul, W.D., and Gruber, S.H., Using demographic models to determine intrinsic rate of increase and sustainable fishing for elasmobranchs: pitfalls, advances and applications, North Am. J. Fish. Manage., 2007, vol. 27, pp. 605–618. https://doi.org/10.1577/M05-157.1

    Article  Google Scholar 

  22. Geng, Z. and Zhu, J., Estimating population growth rate for Indian Ocean blue shark (Prionace glauca) using demographic method, in The 13th Working Party on Ecosystem and Bycatch, San Sebastian: Indian Ocean Tuna Comm., 2017.

    Google Scholar 

  23. Goldman, K.J., Branstetter, S., and Musick, J.A., A re-examination of the age and growth of sand tiger sharks, Carcharhinus taurus, in the western North Atlantic: the importance of ageing protocols and use of multiple back-calculation techniques, Environ. Biol. Fish., 2006, vol. 77, pp. 241–252. https://doi.org/10.1007/s10641-006-9128-y

    Article  Google Scholar 

  24. Heppell, S.S., Crowder, L.B., and Menzel, T.R., Life table analysis of long-lived marine species, with implications for conservation and management, in Life in the Slow Lane: Ecology and Conservation of Long-Lived Marine Animals, Musick, J.A., Ed., Bethesda, MD: Am. Fish. Soc., 1999, pp. 137–148.

    Google Scholar 

  25. Hilborn, R. and Walters, C.J., Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty, New York: Chapman and Hall, 1992.

    Book  Google Scholar 

  26. Hisano, M., Connolly, S.R., and Robbins, W.D., Population growth rates of reef sharks with and without fishing on the Great Barrier Reef: robust estimation with multiple models, PLoS One, 2011, vol. 6, no. 9, art. ID e25028. https://doi.org/10.1371/journal.pone.0025028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hoenig, J.M., Empirical use of longevity data to estimate mortality rates, Fish. Bull., 1983, vol. 82, pp. 898–903.

    Google Scholar 

  28. Hoenig, J.M. and Gruber, S.H., Life history patterns in elasmobranchs: implications for fisheries management, in Elasmobranchs as Living Resources: Advances in the Biology, Ecology, Systematic and the Status of the Fisheries, NOAA Tech. Rep. NMFS, no. 90, Pratt, H.L., Jr., et al., Eds., Washington, DC: Natl. Ocean. Atmos. Admin., 1990, pp. 1–16.

  29. Holden, M.H. and McDonald-Madden, E., High prices for rare species can drive large populations extinct: the anthropogenic Allee effect revisited, J. Theor. Biol., 2017, vol. 429, pp. 170–180. https://doi.org/10.1016/j.jtbi.2017.06.019

    Article  PubMed  Google Scholar 

  30. Jabado, R.W., The fate of the most threatened order of elasmobranchs: shark-like batoids (Rhinopristiformes) in the Arabian Sea and adjacent waters, Fish. Res., 2018, vol. 204, pp. 448–457. https://doi.org/10.1016/j.fishres.2018.03.022

    Article  Google Scholar 

  31. Kadri, H., Marouani, S., Bradai, M.N., Bouain, A., and Morize, E., Age, growth, mortality, longevity and reproductive biology of the white skate, Rostroraja alba (Chondrichthyes: Rajidae) of the Gulf of Gabès (Southern Tunisia, Central Mediterranean), Turk. J. Fish. Aquat. Sci., 2014, vol. 14. pp. 193–204. https://doi.org/10.4194/1303-2712-v14_1_21

    Article  Google Scholar 

  32. Kyne, P.M., Rigby, C.L., Dharmadi, and Jabado, R.W., Rhynchobatus australiae, in The IUCN Red List of Threatened Species, Glanz, 2019, no. e.T41853A68643043. https://doi.org/10.2305/IUCN.UK.20192.RLTS.T4185-3A68643043.en

  33. Kyne, P.M., Jabado, R.W., Rigby, C.L., Dharmadi, Gore, M.A., Pollock, C.M., Herman, K.B., Cheok, J., Ebert, D.A., Simpfendorfer, C.A., and Dulvy, N.K., The thin edge of the wedge: Extremely high extinction risk in wedgefishes and giant guitarfishes, Aquat. Conserv. Mar. Fresh. Ecosyst., 2020, vol. 30, no. 7, pp. 1337–1361. https://doi.org/10.1002/aqc.3331

    Article  Google Scholar 

  34. Kynoch, R.J., Fryer, R.J., and Neat, F.C., A simple technical measure to reduce bycatch and discard of skates and sharks in mixed-species bottom-trawl fisheries, ICES. J. Mar. Sci., 2015, vol. 72, no. 6, pp. 1861–1868. https://doi.org/10.1093/icesjms/fsv037

    Article  Google Scholar 

  35. Last, P.R. and Stevens, J.D., Sharks and Rays of Australia, Canberra: CSIRO, 2009, 2nd ed.

    Google Scholar 

  36. Last, P.R., White, W.T., and Seret, B., Wedgefishes: family Rhinidae, in Rays of the World, Last, P.R., , Eds., Canberra: CSIRO, 2016, pp. 65–76.

    Book  Google Scholar 

  37. Masuda, H., Araga, C., and Yoshino, T., Coastal Fishes of Southern Japan, Tokyo: Tokai Univ. Press, 1975.

    Google Scholar 

  38. Mildenberger, T.K., Taylor, M.H., and Wolff, M., TropFishR: an R package for fisheries analysis with length-frequency data, Methods Ecol. Evol., 2017, vol. 8, no. 11, pp. 1520–1527. https://doi.org/10.1111/2041-210X.12791

    Article  Google Scholar 

  39. Mollet, H.F. and Cailliet, G.M., Comparative population demography of elasmobranchs using life history tables, Leslie matrices and stage-based matrix models, Mar. Freshwater Res., 2002, vol. 53, pp. 503–515. https://doi.org/10.1071/MF01083

    Article  Google Scholar 

  40. Moore, A.B.M., Are guitarfishes the next sawfishes? Extinction risk and an urgent call for conservation action, Endangered Species Res., 2017, vol 34, pp. 75–88. https://doi.org/10.3354/esr00830

    Article  Google Scholar 

  41. Pardo, S.A., Cooper, A.B., Reynolds, J.D., and Dulvy, N.K., Quantifying the known unknowns: estimating maximum intrinsic rate of population increase in the face of uncertainty, ICES J. Mar. Sci., 2018, vol. 75, no. 3, pp. 953–963. https://doi.org/10.1093/icesjms/fsx220

    Article  Google Scholar 

  42. Pauly, D., On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks, ICES J. Mar. Sci., 1980, vol. 39, no. 2, pp. 175–192. https://doi.org/10.1093/icesjms/39.2.175

    Article  Google Scholar 

  43. Pauly, D. and David, N., ELEFAN 1, a BASIC program for the objective extraction of growth parameters from length-frequency data, Meeresforschung, 1981, vol. 28, no. 4, pp. 205–211.

    Google Scholar 

  44. Pauly, D., Hilborn, R. and Branch, T.A., Fisheries: Does catch reflect abundance? Nature, 2013, vol. 494, pp. 303–306. https://doi.org/10.1038/494303a

    Article  CAS  PubMed  Google Scholar 

  45. R Core Team, R: A Language and Environment for Statistical Computing, Vienna: R Found. Stat. Comput., 2019, https://www.R–project.org/.

  46. Raje, S.G., Skate fishery and some biological aspects of five species of skates off Mumbai, Indian J. Fish., 2006, vol. 53, no. 4, pp. 431–439.

    Google Scholar 

  47. Sadri and Yuneni, R.R., Wedgefishes and Guitarfishes Conservation: Fisheries Baseline and Identifying Species Threats through Observer and Enumerator Program: Technical Report, Jakarta: WWF Indonesia, 2019.

    Google Scholar 

  48. Simeon, B.M., Muttaqin, E., Ichsan, M., Tarigan, S., Hernawati, and Yulianto, I., Laporan Teknis: Profil Perikanan Wedgefish di Indonesia, Studi Kasus di Nusa Tenggara Barat dan Aceh, Bogor: WCS–IP, 2019.

    Google Scholar 

  49. Simpfendorfer, C.A., Demographic models: life tables, matrix models and rebound potential, in Management Techniques for Elasmobranch Fisheries, Musick, J.A. and Bonfil, R., Eds., Rome: UN Food Agric. Org., 2005, pp. 143–153.

    Google Scholar 

  50. Smith, S.E., Au, D.W., and Show, C., Intrinsic rebound potential of 26 species of Pacific sharks, Mar. Freshwater Res., 1998, vol. 49, pp. 663–678. https://doi.org/10.1071/MF97135

    Article  Google Scholar 

  51. Sparre, P. and Venema, S.C., Introduction to Tropical Fish Stock Assessment, Part 1: Manual, Rome: UN Food Agric. Org., 1998.

  52. Statistics of Marine Capture Fisheries by Fisheries Management Area (FMA), 2005–2016, Jakarta: Dir. Gen. Capture Fish., Ministry Mar. Aff. Fish., 2017.

  53. Stobutzki, I.C., Miller, M.J., Heales, D.S., and Brewer, D.T., Sustainability of elasmobranchs caught as bycatch in a tropical prawn (shrimp) trawl fishery, Fish. Bull., 2002, vol. 100, pp. 800–821.

    Google Scholar 

  54. Stobutzki, I.C., Silvestre, G.T., Talib, A.A., Krongprom, A., Supongpan, M., Khemakorn, P., Armada, N., and Garces, L.R., Decline of demersal coastal fisheries resources in three developing Asian countries, Fish. Res., 2006, vol. 78, pp. 130–142. https://doi.org/10.1016/j.fishres.2006.02.004

    Article  Google Scholar 

  55. Taylor, C.C., Cod growth and temperature, ICES J. Mar. Sci., 1958, vol. 23, no. 3, pp. 366–70. https://doi.org/10.1093/icesjms/23.3.366

    Article  Google Scholar 

  56. Taylor, M.H. and Mildenberger, T.K., Extending electronic length frequency analysis in R, Fish. Manage. Ecol., 2017, vol. 24, pp. 330–338. https://doi.org/10.1111/fme.12232

    Article  Google Scholar 

  57. Then, A.Y., Hoenig, J.M., Hall, N.G., and Hewitt, D.A., Evaluating the predictive performance of empirical estimators of natural mortality rate using information on over 200 fish species, ICES J. Mar. Sci., 2015, vol. 72, no. 1, pp. 82–92. https://doi.org/10.1093/icesjms/fsu136

    Article  Google Scholar 

  58. Tsai, W.-P., Liu, K.-M., and Joung, S.-J., Demographic analysis of the pelagic thresher shark, Alopias pelagicus, in the north-western Pacific using a stochastic stage-based model, Mar. Freshwater Res., 2010, vol. 61, pp. 1056–1066. https://doi.org/10.1071/MF09303

    Article  CAS  Google Scholar 

  59. Tsai, W.-P., Sun, C.-L., Punt, A.E., and Liu, K.-M., Demographic analysis of the shortfin mako shark, Isurus oxyrinchus, in the Northwest Pacific using a two-sex stage-based matrix model, ICES J. Mar. Sci., 2014, vol. 71, no. 7, pp. 1604–1618. https://doi.org/10.1093/icesjms/fsu056

    Article  Google Scholar 

  60. Tull, M., The history of shark fishing in Indonesia, in Historical Perspectives of Fisheries Exploitation in the Indo-Pacific, Christensen, J. and Tull, M., Eds., New York: Springer-Verlag, 2014, pp. 63–81. https://doi.org/10.1007/978-94-017-8727-7_4

  61. Wang, K., Zhang, C., Xu, B., Xue, Y., and Ren, Y., Selecting optimal bin size to account for growth variability in Electronic LEngth Frequency ANalysis (ELEFAN), Fish. Res., 2020, vol. 225, art. ID 105474. https://doi.org/10.1016/j.fishres.2019.105474

    Article  Google Scholar 

  62. Ward-Paige, C.A., A global overview of shark sanctuary regulations and their impact on shark fisheries, Mar. Policy, 2017, vol. 82, pp. 87–97. https://doi.org/10.1016/j.marpol.2017.05.004

    Article  Google Scholar 

  63. Weigmann, S., Contribution to the taxonomy and distribution of eight ray species (Chondrichthyes, Batoidea) from coastal waters of Thailand, Verh. Naturwiss. Ver. Hamburg, 2011, vol. 46, pp. 249–312. https://doi.org/10.5402/2012/860768

    Article  Google Scholar 

  64. White, W.T. and Dharmadi, Species and size compositions and reproductive biology of rays (Chondrichthyes, Batoidea) caught in target and non–target fisheries in eastern Indonesia, J. Fish Biol., 2007, vol. 70, pp. 1809–1837. https://doi.org/10.1111/j.1095-8649.2007.01458.x

    Article  Google Scholar 

  65. White, W.T., Last, P.R., Stevens, J.D., Fahmi, and Dharmadi, Economically Important Sharks and Rays of Indonesia, Canberra: Austr. Centre Int. Agric. Res., 2006.

    Google Scholar 

  66. White, J., Simpfendorfer, C.A., Tobin, A.J., and Heupel, M.R., Age and growth parameters of shark-like batoids, J. Fish Biol., 2014, vol. 84, pp. 1340–1353. https://doi.org/10.1111/jfb.12359

    Article  CAS  PubMed  Google Scholar 

  67. Yuwandana, D.W., Agustina, S., Haqqi, M.B., and Simeon, B.M., Studi awal perikanan pari kekeh (Rhynchobatus sp.) dan pari kikir (Glaucostegus sp.) di Perairan Utara Jawa Tengah, J. Akuatika Indones., 2020, vol. 5, no. 1, pp. 1–6. https://doi.org/10.24198/jaki.v5i1.25938

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the enumerators who had been collecting the length data of R. australiae and R. ancylostoma at Tegalsari Coastal Fishing Port (Tegal), Bajomulyo Coastal Fishing Port (Pati), Tasik Agung Coastal Fishing Port (Rembang), Brondong Archipelagic Fishing Port (Lamongan) and Sungai Kakap Fish Landing Port (Pontianak) in the years 2017, 2018 and 2019. A gratitude also goes to Muhammad Fauzan who helped prepare the map in Fig. 1.

Funding

The study was funded by (a) COREMAP-CTI through Priority Research Program of Research Center for Oceanography, Indonesian Institute of Sciences, Budgetary Year 2018 and 2019, (b) DIPA of Regional Office for Marine and Coastal Resources Management Denpasar, Ministry of Marine Affairs and Fisheries, Budgetary Year 2017−2019, and (c) Shark Conservation Fund (SCF) through Wildlife Conservation Society (WCS) Indonesia Program and REKAM Nusantara Foundation, Budgetary Year 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Kurniawan.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurniawan, W., Oktaviyani, S., Simeon, B.M. et al. Population Status of Two Wedgefish Species in Western Indonesian Inner Waters, Inferred from Demographic Models with Limited Data. J. Ichthyol. 61, 433–451 (2021). https://doi.org/10.1134/S003294522103005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003294522103005X

Keyword:

Navigation