Skip to main content
Log in

Regulation of Volumes of the Muscle, Liver, and Brain Erythrocytes in Crucian Carp Carassius auratus (Cyprinidae) in Response to Increase in the Osmotic Concentration in Blood Plasma

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

In crucian carp Carassius auratus maintained in fresh water, osmotic concentrations in the blood plasma, muscles, liver, cerebrospinal fluid, and brain are in equilibrium with each other. In freshwater and at water salinity of 11.5 g/L, the osmotic concentration in the erythrocytes is significantly higher relative to blood plasma, which produces hydrostatic pressure inside the red blood cells. At the critical water salinity, osmotic concentration in the blood plasma of crucian carp increases owing to electrolytes by 44.3%, while it increases in erythrocytes, muscles, liver, cerebrospinal fluid, and in brain by 20.6−36.3%; the deficiency of electrolytes in these tissues is compensated by accumulation of the organic osmolytes. In the fish within the zone of critical salinity, sodium and potassium ions participate in the regulation of the volumes of erythrocytes and liver cells, while only sodium ions participate in the regulation of the volumes of muscles and brain. At critical salinity, crucian carp erythrocytes and muscle cells do not restore their volumes to the level typical for the fish in fresh water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Assem, H. and Hanke, W., Volume regulation of muscle cells in the euryhaline teleost, Tilapia mossambica, Comp. Biochem. Physiol., Part A:Mol. Integr. Physiol., 1979, vol. 64, pp. 17–23.

    Google Scholar 

  2. Blinks, J.R., Influence of osmotic strength on cross-section and volume of isolated single muscle fibers, J. Physiol., 1965, vol. 177, pp. 42–57.

    Article  CAS  Google Scholar 

  3. Brauner, C.J., Wang, T., and Jensen, F.B., Influence of hyperosmotic shrinkage and beta-adrenergic stimulation on red blood cell volume regulation and oxygen binding properties in rainbow trout and carp, J. Comp. Physiol., B, 2002, vol. 172, pp. 251–262.

    Article  CAS  Google Scholar 

  4. Cala, P.M., Volume regulation by Amphiuma red blood cells. The membrane potential and its implications regarding the nature of the ion-flux pathways, J. Gen. Physiol., 1980, vol. 76, pp. 683–708.

    Article  CAS  Google Scholar 

  5. Christensen, E.A.F., Svendsen, M.B.S., and Steffensen, J.F., Plasma osmolality and oxygen consumption of perch Perca fluviatilis in response to different salinities and temperatures, J. Fish Biol., 2016, vol. 90, no. 3, pp. 834−846. doi 10.1111/jfb.13200

    Google Scholar 

  6. Davis, K.B. and Simco, B.A., Salinity effects on plasma electrolytes of channel catfish, Ictalurus punctatus,J. Fish. Res. Board Can., 1976, vol. 33, pp. 741–746.

    Article  CAS  Google Scholar 

  7. Dunham, P.B., The adaptation of Tetrahymena to a high NaCl environment, Biol. Bull., 1964, vol. 126, pp. 373–390.

    Article  Google Scholar 

  8. Fugelli, K. and Zachariassen, K.E., The distribution of taurine, gamma-aminobutyric acid and inorganic ions between plasma and erythrocytes in flounder (Platichthys flesus) at different plasma osmolalities, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1976, vol. 55, pp. 173−177.

    Article  CAS  Google Scholar 

  9. Gordon, M.S., Intracellular osmoregulation in skeletal muscle during salinity adaptation in two species of toads, Biol. Bull., 1965, vol. 128, pp. 218–229.

    Article  CAS  Google Scholar 

  10. Hegab, S.A. and Hanke, W., Electrolyte changes and volume regulatory processes in the carp (Cyprinus carpio) during osmotic stress, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1982, vol. 71, pp. 157–164.

    Article  Google Scholar 

  11. Hegab, S.A. and Hanke, W., The significance of the amino acids during osmotic adjustment in teleost fish. II. Changes in the stenohaline Cyprinus carpio, Comp. Biochem. Physiol., Part A:Mol. Integr. Physiol., 1983, vol. 74, pp. 537–543.

    Google Scholar 

  12. Hegab, S.A. and Hanke, W., Electrolyte changes, cell volume regulation and hormonal influences during acclimation of rainbow trout (Salmo gairdneri) to salt water, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1986, vol. 83, pp. 47–52.

    Article  Google Scholar 

  13. Houston, A.H. and Smeda, J.S., Thermoacclimatory changes in the ionic microenvironment of hemoglobin in the stenothermal rainbow trout (Salmo gairdneri) and eurythermal carp (Cyprinus carpio), J. Exp. Biol., 1979, vol. 80, pp. 317–340.

    CAS  PubMed  Google Scholar 

  14. Jensen, F.B., Lecklin, T., Busk, M., et al., Physiological impact of salinity increase at organism and red blood cell levels in the European flounder (Platichthys flesus), J. Exp. Mar. Biol. Ecol., 2002, vol. 274, pp. 159–174.

    Article  Google Scholar 

  15. Khlebovich, V.V., Kriticheskaya solenost’ biologicheskikh protsessov (Critical Salinity for Biological Processes), Leningrad: Nauka, 1974.

    Google Scholar 

  16. Koldkjaer, P., Wang, T., Taylor, T.W., and Abe, A.S., Red blood cells from the South American rattlesnake (Crotalus durissus terrificus) regulate volume incompletely following osmotic shrinkage and swelling in vitro, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 2000, vol. 127, pp. 49–54.

    Article  CAS  Google Scholar 

  17. Kristensen, K., Berenbrink, M., Koldkjaer, P., et al., Minimal volume regulation after shrinkage of red blood cells from five species of reptiles, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 2008, vol. 150, pp. 46–51.

    Article  Google Scholar 

  18. Lasserre, P. and Gilles, R., Modification of the amino acid pool in the parietal muscle of two euryhaline teleosts during osmotic adjustment, Experientia, 1971, vol. 27, pp. 1434–1435.

    Article  CAS  Google Scholar 

  19. Lavrova, E.A., Natochin, Yu.V., and Shakhmatova, E.I., Electrolytes in the tissues of sturgeon and teleosts in fresh and sea water, Vopr. Ikhtiol., 1984, vol. 24, no. 5, pp. 867–871.

    CAS  Google Scholar 

  20. Leader, J.P. and Bedford, J.J., Volume regulation in vitro of muscle fibers of the crab, Hemigrapsus edwardsi,J. Comp. Physiol., 1978, vol. 128, pp. 153–159.

    Article  Google Scholar 

  21. Maceina, M.J. and Shireman, J.V., Grass carp: effects of salinity on survival, weight loss, and muscle tissue water content, Progr. Fish-Cult., 1979, vol. 41, pp. 69–73.

    Article  Google Scholar 

  22. Martemyanov, V.I., The content of electrolytes in plasma and tissues of the northern pike Esox lucius during naturalization in water with different salinity, Vopr. Ikhtiol., 1988, vol. 28, no. 2, pp. 337–341.

    Google Scholar 

  23. Martemyanov, V.I., Influence of salinity on freshwater fishes, Zool. Zh., 1989, vol. 68, no. 5, pp. 72–81.

    Google Scholar 

  24. Martemyanov, V.I., The regularities of changes in the sodium ion levels in fish erythrocytes during adaptation to a temperature, Biol. Bull. (Moscow), 2009, vol. 36, no. 4, pp. 412−416.

    Article  CAS  Google Scholar 

  25. Martemyanov, V.I., Influence of environmental mineral composition on the indices of water-salt metabolism in Dreissena polymorpha Pallas introduced to Rybinsk reservoir, Russ. J. Biol. Invasions, 2011, vol. 2, nos. 2–3, pp. 213–222. doi 10.1134/S207511171103009X

    Article  Google Scholar 

  26. Martemyanov, V.I., Assessment of the status of fishes in relation to salinity of the environment based on the types of osmotic and ionic regulation, Tr. Zool. Inst., Ross. Akad. Nauk, 2013, no. 3, pp. 175–181.

  27. Martemyanov, V.I., Determination of total, free, and related water fraction in organism and tissues of hydrobionts, Voda: Khim. Ekol., 2014, no. 2, pp. 86–91.

  28. Martemyanov, V.I., Mechanisms of regulation of erythrocyte volume in common carp Cyprinus carpio (Cyprinidae) at increase in the osmotic concentration of blood plasma within the zone of critical water salinity, J. Ichthyol., 2017, vol. 57, no. 2, pp. 306–312. doi 10.1134/S0032945217020114

    Article  Google Scholar 

  29. Martemyanov, V.I. and Borisovskaya, E.V., Indices of salt and water metabolism in tubenose goby Proterorhinus marmoratus Pallas, introduced into Rybinsk Reservoir, and in indigenous carp Cyprinus carpio L. depending on environmental salinity, Russ. J. Biol. Invasions, 2012, vol. 3, no. 2, pp. 110–117. doi 10.1134/S2075111712020075

    Article  Google Scholar 

  30. Orlov, S.N. and Skryabin, G.A., Catecholamine- and volume-dependent ion fluxes in carp (Cyprinus carpio) red blood cells, J. Comp. Physiol. B, 1993, vol. 163, pp. 413–420.

    Article  CAS  Google Scholar 

  31. Romero, M.G., Guizouarn, H., Pellissier, B., et al., The erythrocyte Na+/H+ exchanger in eel (Anguilla anguilla) and rainbow trout (Oncorhyncus mykiss): a comparative study, J. Exp. Biol., 1996, vol. 136, pp. 405–416.

    Google Scholar 

  32. Schmidt-Nielsen, B., Volume regulation of muscle fibers in the killifish, Fundulus heteroclitus,J. Exp. Zool., 1977, vol. 199, pp. 411–418.

    Article  CAS  Google Scholar 

  33. Somero, G.N., Protons, osmolytes, and fitness of internal milieu for protein function, Am. J. Physiol., 1986, vol. 251, pp. R197–R213.

    Article  CAS  Google Scholar 

  34. Tse, W.K.F., Au, D.W.T., and Wong, C.K.C., Effect of osmotic shrinkage and hormones on the expression of Na+/H+ exchanger-1, Na+/K+/2Cl cotransporter and Na+/K+-ATPase in gill pavement cells of freshwater adapted Japanese eel, Anguilla japonica,J. Exp. Biol., 2007, vol. 210, pp. 2113–2120.

    Article  CAS  Google Scholar 

  35. Venkatachari, S.A.T., Effect of salinity adaptation on nitrogen metabolism in the freshwater fish Tilapia mossambica. I. Tissue protein and amino acid levels, Mar. Biol., 1974, vol. 24, pp. 57–63.

    Article  CAS  Google Scholar 

  36. Vislie, T., Hyper-osmotic cell volume regulation in vivo and in vitro in flounder (Platichthys flesus) heart ventricles, J. Comp. Physiol., 1980, vol. 140, pp. 185–191.

    Article  Google Scholar 

  37. Vislie, T. and Fugelli, K., Cell volume regulation in flounder (Platichthys flesus) heart muscle accompanying an alteration in plasma osmolality, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1975, vol. 52, pp. 415–418.

    Article  CAS  Google Scholar 

  38. Weaver, Y.R., Kiessling, K., and Cossins, A.R., Responses of the Na+/H+ exchanger of European flounder red blood cells to hypertonic, β-adrenergic and acidotic stimuli, J. Exp. Biol., 1999, vol. 202, pp. 21–32.

    CAS  PubMed  Google Scholar 

  39. Wehner, F., Olsen, H., Tinel, H., et al., Cell volume regulation: osmolytes, osmolytes transport, and signal transduction, Rev. Physiol. Biochem. Pharmacol., 2003, vol. 148, pp. 1–80.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The study was supported by the Russian Foundation for Basic Research, project no. 16-04-00120a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Martemyanov.

Additional information

Translated by D. Pavlov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martemyanov, V.I., Vasiliev, A.S. Regulation of Volumes of the Muscle, Liver, and Brain Erythrocytes in Crucian Carp Carassius auratus (Cyprinidae) in Response to Increase in the Osmotic Concentration in Blood Plasma. J. Ichthyol. 58, 563–569 (2018). https://doi.org/10.1134/S0032945218040112

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945218040112

Keywords:

Navigation