Skip to main content
Log in

Comparative Сharacteristics of the Structure and Functional Properties of Coatings Formed on Aluminum Alloys 2ххх and 7ххх Series by the Method of Plasma Electrolytic Oxidation

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract—

The structure and properties of coatings formed on 2ххх and 7ххх aluminum alloys by plasma electrolytic oxidation (PEO) performed under the same conditions have been studied. The substrate material is shown to substantially affect the quality, structure, and properties of formed coatings. Compared to the D16 Т (4Cu, 1.4Mg wt %) alloy substrate, the V95 Т1 (6.2Zn, 2.4Mg, 1.7Cu wt %) alloy substrate favors the formation of coatings with a more homogeneous composition and uniform thickness, which exhibit great cohesive and adhesive strength and mechanical and tribological properties. The adhesive failure of PEO coatings formed on the V95 Т1 alloy occurs at a load of 63 N, which is substantially higher than the critical load (49 N) of coatings formed on the D16 T alloy. The maximum hardness of coatings formed on the V95 Т1 alloy is 25 GPa, which exceeds that of coatings formed on the D16 T alloy and is equal to 20 GPa. The wear resistance of coating in water, which is formed on the V95 Т1 alloy is 4.4 times higher compared to that of the wear-resistant coating formed on the D16 T alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. G. Sabitini, L. Leschini, C. Martini, J. A. William, and I. M. Hutchings, “Improving sliding and abrasive wear behavior of cast A356 and wrought AA7075 aluminum alloys by plasma electrolytic oxidation,” Mater. Des. 31, 816–828 (2010). https://doi.org/10.1016/j.matdes.2009.07.053

    Article  CAS  Google Scholar 

  2. C. Liu, Q. Wang, X. Cao, L. Cha, R. Ye, and C. S. Ramachandran, “Significance of plasma electrolytic oxidation treatment on corrosion and sliding wear performances of selective laser melted AlSi10Mg alloy,” Mater. Charact. 181, 111479 (2021). https://doi.org/10.1016/j.matchar.2021.111479

    Article  CAS  Google Scholar 

  3. L. R. Krishna, A. S. Purnima, N. P. Wasekar, and G. Sundararajan, “Kinetics and properties of micro arc oxidation coatings deposited on commercial Al alloys,” Metall. Mater. Trans. A 38, 370–378 (2007). https://doi.org/10.1007/s11661-006-9054-9

    Article  CAS  Google Scholar 

  4. F. Muhaffel, M. Baydogan, and H. Cimenoglu, “A study to enhance the mechanical durability of the MAO coating fabricated on the 7075 Al alloy for wear-related high temperature applications,” Surf. Coat. Technol. 409, 126843 (2021). https://doi.org/10.1016/j.surfcoat.2021.126843

    Article  CAS  Google Scholar 

  5. L. Agureev, S. Savushkina, A. Ashmarin, A. Borisov, A. Apelfeld, K. Anikin, N. Tkachenko, M. Gerasimov, A. Shcherbakov, V. Ignatenko, and N. Bogdashkina, “Study of plasma electrolytic oxidation coatings on aluminum composites,” Metals 8, 459 (2018). https://doi.org/10.3390/met8060459

    Article  CAS  Google Scholar 

  6. A. S. Shatrov and V. N. Kokarev, “High-efficient light submerging multistage electric centrifugal pumps for oil extraction under complex conditions,” Neftegazovye Tekhnol. Analitika, No. 2, 14–22 (2018) [in Russian].

    Google Scholar 

  7. A. S. Shatrov and V. N. Kokarev, “Novaya tekhnologiya promyshlennogo proizvodstva iznosostoikikh detalei truboprovodnoi armatury iz alyuminievykh splavov s zashchitnym keramicheskim nanostrukturnym pokrytiem,” [A new technology for the industrial production of wear-resistant parts of pipeline fittings made of aluminum alloys with a protective ceramic nanostructured coating], Vestn. Armaturshchika, No. 6, 48–50 (2014).

    Google Scholar 

  8. P. Wang, T. Wu, Y. T. Xiao, L. Zhang, J. Pu, W. J. Cao, and X. M. Zhong, “Characterization of micro-arc oxidation coatings on aluminum drill pipes at different current density,” Vacuum 142, 21–28 (2017). https://doi.org/10.1016/j.vacuum.2017.04.038

    Article  CAS  Google Scholar 

  9. T. K. Akopyan, Y. V. Gamin, S. P. Galkin, A. S. Prosviryakov, A. S. Aleshchenko, M. A. Noshin, A. N. Koshmin, and A. V. Fomin, “Radial-shear rolling of high-strength aluminum alloys: Finite element simulation and analysis of microstructure and mechanical properties,” Mater. Sci. Eng., A 786, 139424 (2020). https://doi.org/10.1016/j.msea.2020.139424

    Article  CAS  Google Scholar 

  10. T. K. Akopyan and N. A. Belov, “Approaches to the design of the new high-strength casting aluminum alloys of 7xxx series with high iron content,” Non-Ferrous Met., No. 1, 20–27 (2016). https://doi.org/10.17580/nfm.2016.01.04

  11. L. Sun, Y. Guo, L. Chen, and G. Zhao, “Effects of solution and aging treatments on the microstructure and mechanical properties of cold rolled 2024 Al alloy sheet,” J. Mater. Res. Technol. 12, 1126–1142 (2021). https://doi.org/10.1016/j.jmrt.2021.03.051

    Article  CAS  Google Scholar 

  12. A. G. Rakoch, A. A. Gladkova, and A. V. Dub, Plasma-Electrolythic Treatment of Aluminum and Titanium Alloys (Mosk. Inst. Stal i Splavov, Moscow, 2017) [in Russian].

    Google Scholar 

  13. M. A. Markov, A. D. Bykova, A. V. Krasikov, B. V. Farmakovskii, and D. A. Gerashchenkov, “Formation of wear- and corrosion-resistant coatings by the microarc oxidation of aluminum,” Refract. Ind. Ceram. 59, 207–214 (2018). https://doi.org/10.1007/s11148-018-0207-3

    Article  CAS  Google Scholar 

  14. A. G. Rakoch, Z. V. Khabibullina, O. V. Volkova, A. V. Borko, T. Van Tuan, I. V. Suminov, S. V. Zhukov, “Influence of current density and duration of PET of AA2024 alloy on the rate and growth mechanisms of a coating’s wear-resistant anticorrosive inner layer,” Int. J. Corros. Scale Inhib. 10, 1621–1637 (2021).

    CAS  Google Scholar 

  15. A. E. Gulec, Y. Gencer, and M. Tarakci, “The characterization of oxide based ceramic coating synthesized on Al–Si binary alloys by microarc oxidation,” Surf. Coat. Technol. 269, 100–107 (2015). https://doi.org/10.1016/j.surfcoat.2014.12.031

    Article  CAS  Google Scholar 

  16. Y. Gencer and A. E. Gulec, “The effect of Zn on the microarc oxidation coating behavior of synthetic Al–Zn binary alloys,” J. Alloys Compd. 525, 159–165 (2012). https://doi.org/10.1016/j.jallcom.2012.02.094

    Article  CAS  Google Scholar 

  17. S. Cengiz, M. Tarakci, Y. Gencer, A. O. Devecili, and Y. Azakli, “Oxide based ceramic coating on Al–4Cu alloy by microarc oxidation,” Acta Phys. Pol. A 123, 445–448 (2013). https://doi.org/10.12693/APhysPolA.123.445

    Article  CAS  Google Scholar 

  18. M. Tarakci, “Plasma electrolytic oxidation coating of synthetic Al–Mg binary alloys,” Mater. Charact. 62, 1214–1221 (2011). https://doi.org/10.1016/j.matchar.2011.10.010

    Article  CAS  Google Scholar 

  19. Y. Gencer, M. Tarakci, A. E. Gulec, and Z. C. Oter, “Plasma electrolytic oxidation of binary Al–Sn alloys,” Acta Phys. Pol. A 125, 659–663 (2014). https://doi.org/10.12693/APhysPolA.125.659

    Article  CAS  Google Scholar 

  20. S. Cengiz, “Synthesis of eutectic Al-18Ce alloy and effect of cerium on the PEO coating growth,” Mater. Chem. Phys. 247, 122897 (2020). https://doi.org/10.1016/j.matchemphys.2020.122897

    Article  CAS  Google Scholar 

  21. Y.-J. Oh, J.-I. Mun, and J.-H. Kim, “Effects of alloying elements on microstructure and protective properties of Al2O3 coatings formed on aluminum alloy substrates by plasma electrolysis,” Surf. Coat. Technol. 204, 141–148 (2009). https://doi.org/10.1016/j.surfcoat.2009.07.002

    Article  CAS  Google Scholar 

  22. K. Tillous, T. Toll-Duchanoy, E. Bauer-Grosse, L. Hericher, and G. Geandier, “Microstructure and phase composition of microarc oxidation surface layers formed on aluminium and its alloys 2214-T6 and 7050-T4,” Surf. Coat. Technol. 203, 2969–2973 (2009). https://doi.org/10.1016/j.surfcoat.2009.03.021

    Article  CAS  Google Scholar 

  23. A. Venugopal, J. Srinath, L. Rama Krishna, P. Ramesh Narayanan, S. C. Sharma, and P. V. Venkitakrishnan, “Corrosion and nanomechanical behaviors of plasma electrolytic oxidation coated AA7020-T6 aluminum alloy,” Mater. Sci. Eng., A 660, 39–46 (2016). https://doi.org/10.1016/j.msea.2016.02.045

    Article  CAS  Google Scholar 

  24. T. Arunnellaiappan, N. Kishore Babu, L. Rama Krishna, and N. Rameshbabu, “Influence of frequency and duty cycle on microstrure of plasma electrolytic oxidized AA7075 and the correlation to its corrosion behavior,” Surf. Coat. Technol. 280, 136–147 (2015). https://doi.org/10.1016/j.surfcoat.2015.08.043

    Article  CAS  Google Scholar 

  25. T. Wu, C. Blawerta, and M. L. Zheludkevich, “Influence of secondary phases of AlSi9Cu3 alloy on the plasma electrolytic oxidation coating formation process,” J. Mater. Sci. Technol. 50, 75–85 (2020). https://doi.org/10.1016/j.jmst.2019.12.031

    Article  CAS  Google Scholar 

  26. D. Veys-Renaux and E. Rocca, “Initial stages of multi-phased aluminium alloys anodizing by MAO: Micro-arc conditions and electrochemical behavior,” J. Solid State Electrochem. 19, 3121–3129 (2015). https://doi.org/10.1007/s10008-015-2935-3

    Article  CAS  Google Scholar 

  27. M. I. Petrzhik and E. A. Levashov, “Modern methods for investigating functional surfaces of advanced materials by mechanical contact testing,” Crystallogr. Rep. 52, 966–974 (2007). https://doi.org/10.1134/S1063774507060065

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Moscow Polytechnic University within the framework of the grant named after Pyotr Kapitsa (preparation of alloys with PEO coatings, electron microscopy (SEM, EMPA)) and by the Ministry of Science and Higher Education of the Russian Federation (Project no. 0718‑2020‑0034 of State Assignment) (in-situ study of the mechanisms of deformation and fracture of coatings).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Letyagin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Letyagin, N.V., Sokorev, A.A., Kokarev, V.N. et al. Comparative Сharacteristics of the Structure and Functional Properties of Coatings Formed on Aluminum Alloys 2ххх and 7ххх Series by the Method of Plasma Electrolytic Oxidation. Phys. Metals Metallogr. 124, 238–244 (2023). https://doi.org/10.1134/S0031918X23700138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23700138

Keywords:

Navigation