Skip to main content
Log in

Effects of Substituting Nb with Ta on Microstructure and Thermal Properties of Novel Biocompatible TiNiNbTa Shape Memory Alloys

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

TiNi-based Shape Memory Alloys (SMAs) are important materials that could be used in surgical applications despite the negative effects of the Ni element. In this study, the microstructure, phase transformation temperatures, and biocompatibility of an equiatomic TiNi, TiNiNb, and TiNiNbTa SMAs were examined by SEM-EDS, DSC, and electrochemical corrosive test, respectively. The arc-melting method was utilized to make five samples of Ti50Ni50 and Ti50Ni27Nb(23–x)Tax (x = 0, 1, 3, and 5 at %) SMAs. DSC results showed that the samples have a wide temperature hysteresis for B19' ↔ B2 phase transformation; also, the martensite onset temperatures above the room temperature. The XRD and SEM analyses indicated that the matrix phase has a B2 crystal structure at room temperature with β-Nb phase and friction of the non-dissolved B19' phase. Talium element was the dominant constituent in the dendritic microstructures. Electrochemical corrosion behaviors of the SMAs were investigated in artificial body fluid at room temperature. It was observed that Ni27Ti50Nb20Ta3 with 1.86 × 10–4 mmpy has the best corrosion rate compared to the other alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. I. N. Qader, M. Kök, F. Dağdelen, and Y. Aydoğdu, “A review of smart materials: researches and applications,” El-Cezerî J. Sci. Eng. 6 (3), 755–788 (2019).

    Google Scholar 

  2. W.-T. Jhou, C. Wang, S. Ii, H.-S. Chiang, and C.‑H. Hsueh, “TiNiCuAg shape memory alloy films for biomedical applications,” J. Alloys Compd. 738, 336–344 (2018).

    Article  CAS  Google Scholar 

  3. C. Wen, X. Yu, W. Zeng, S. Zhao, L. Wang, G. Wan, S. Huang, H. Grover, and Z. Chen, “Mechanical behaviors and biomedical applications of shape memory materials: a review,” AIMS Mater. Sci. 5 (4), 559 (2018).

    Article  CAS  Google Scholar 

  4. H. Rodrigue, W. Wang, M.-W. Han, T. J. Kim, and S.‑H. Ahn, “An overview of shape memory alloy-coupled actuators and robots,” Soft Rob. 4 (1), 3–15 (2017).

    Article  Google Scholar 

  5. S. Kalra, B. Bhattacharya, and B. Munjal, “Design of shape memory alloy actuated intelligent parabolic antenna for space applications,” Smart Mater. Struct. 26 (9), 095015 (2017).

    Article  Google Scholar 

  6. Shape Memory Alloys: Modeling and Engineering Applications, Ed. by D. C. Lagoudas (Springer-Verlag, New York, 2008).

    Google Scholar 

  7. M. Es-Souni, M. Es-Souni, and H. Fischer-Brandies, “Assessing the biocompatibility of NiTi shape memory alloys used for medical applications,” Anal. Bioanal. Chem. 381 (3), 557–567 (2005).

    Article  CAS  Google Scholar 

  8. T. Mousavi, F. Karimzadeh, and M. Abbasi, “Synthesis and characterization of nanocrystalline NiTi intermetallic by mechanical alloying,” Mater. Sci. Eng., A 487 (1–2), 46–51 (2008).

    Article  Google Scholar 

  9. C. Ying, J. Hai-Chang, R. Li-Jian, X. Li, and Z. Xin-Qing, “Mechanical behavior in NiTiNb shape memory alloys with low Nb content,” Intermetallics 19 (2), 217–220 (2011).

    Article  Google Scholar 

  10. T. Duerig and K. Melton, “Wide hysteresis NiTiNb alloys,” in Proceedings of the 1st European Symp. on Martensitic Transformations in Science and Technology (ESOMAT 1989) (Bochum, 1989).

  11. F. Dagdelen, E. Balci, I. N. Qader, E. Ozen, M. Kok, M. S. Kanca, S. S. Abdullah, and S. S. Mohammed, “Influence of the Nb content on the microstructure and phase transformation properties of NiTiNb shape memory alloys,” JOM 72 (4), 1664–1672 (2020).

    Article  CAS  Google Scholar 

  12. L. Zhao, T. Duerig, S. Justi, K. Melton, J. Proft, W. Yu, and C. Wayman, “The study of niobium-rich precipitates in a Ni–Ti–Nb shape memory alloy,” Scr. Metall. Mater. 24 (2), 221–225 (1990).

    Article  CAS  Google Scholar 

  13. K. Otsuka and X. Ren, “Physical metallurgy of Ti–Ni-based shape memory alloys,” Prog. Mater. Sci. 50 (5), 511–678 (2005).

    Article  CAS  Google Scholar 

  14. C. Zhang, L. Zhao, T. Duerig, and C. Wayman, “Effects of deformation on the transformation hysteresis and shape memory effect in a Ni47Ti44Nb9 alloy,” Scr. Metall. Mater. 24 (9), 1807–1812 (1990).

    Article  CAS  Google Scholar 

  15. S. Miyazaki, T. Imai, Y. Igo, and K. Otsuka, “Effect of cyclic deformation on the pseudoelasticity characteristics of Ti–Ni alloys,” Metall. Trans. A 17 (1), 115–120 (1986).

    Article  Google Scholar 

  16. G. Bolat, D. Mareci, S. Iacoban, N. Cimpoesu, and C. Munteanu, “The estimation of corrosion behavior of NiTi and NiTiNb alloys using dynamic electrochemical impedance spectroscopy,” J. Spectrosc. 2013, 714920 (2013).

    Google Scholar 

  17. D. Mareci, R. Chelariu, A. Cailean, and D. Sutiman, “Electrochemical characterization of Ni47.7Ti37.8Nb14.5 shape memory alloy in artificial saliva,” Mater. Corros. 63 (9), 807–812 (2012).

    Article  CAS  Google Scholar 

  18. S. R. Chen and G. T. Gray, “Constitutive behavior of tantalum and tantalum-tungsten alloys,” Metall. Mater. Trans. A 27 (10), 2994–3006 (1996).

    Article  Google Scholar 

  19. C. Park, S. Kim, H.-E. Kim, and T.-S. Jang, “Mechanically stable tantalum coating on a nano-roughened NiTi stent for enhanced radiopacity and biocompatibility,” Surf. Coat. Technol. 305, 139–145 (2016).

    Article  CAS  Google Scholar 

  20. F. Dagdelen, M. Kok, and I. N. Qader, “Effects of Ta content on thermodynamic properties and transformation temperatures of shape memory NiTi alloy,” Met. Mater. Int. 25 (6), 1420–1427 (2019).

    Article  CAS  Google Scholar 

  21. I. N. Qader, M. Kök, and F. Dağdelen, “Effect of heat treatment on thermodynamics parameters, crystal and microstructure of (Cu–Al–Ni–Hf) shape memory alloy,” Phys. B (Amsterdam) 553, 1–5 (2019).

    Article  CAS  Google Scholar 

  22. E. Ercan, F. Dagdelen, and I. N. Qader, “Effect of tantalum contents on transformation temperatures, thermal behaviors and microstructure of CuAlTa HTSMAs,” J. Therm. Anal. Calorim. 139 (1), 29–36 (2020).

    Article  CAS  Google Scholar 

  23. M. Kök, I. N. Qader, S. S. Mohammed, E. Öner, F. Dağdelen, and Y. Aydogdu, “Thermal stability and some thermodynamics analysis of heat treated quaternary CuAlNiTa shape memory alloy,” Mater. Res. Express 7 (1), 015702 (2019).

    Article  Google Scholar 

  24. F. Dagdelen, C. Ozay, E. Ercan, G. Emir, and I. N. Qader, “Change of electrical resistivity during phase transitions in NiMnSn-based shape memory alloy,” J. Therm. Anal. Calorim., (2021).

  25. C. Tatar, R. Acar, and I. N. Qader, “Investigation of thermodynamic and microstructural characteristics of NiTiCu shape memory alloys produced by arc-melting method,” Eur. Phys. J. Plus 135 (3), 311 (2020).

    Article  CAS  Google Scholar 

  26. I. N. Qader, M. Kok, and Z. D. Cirak, “The effects of substituting Sn for Ni on the thermal and some other characteristics of NiTiSn shape memory alloys,” J. Therm. Anal. Calorim. 145, 279–288 (2021).

  27. M. Kök, A. O. A. Al-Jaf, Z. D. Çirak, I. N. Qader, and E. Özen, “Effects of heat treatment temperatures on phase transformation, thermodynamical parameters, crystal microstructure, and electrical resistivity of NiTiV shape memory alloy,” J. Therm. Anal. Calorim. 139 (6), 3405–3413 (2020).

    Article  Google Scholar 

  28. S. S. Mohammed, M. Kok, I. N. Qader, M. S. Kanca, E. Ercan, F. Dağdelen, and Y. Aydoğdu, “Influence of Ta additive into Cu84–xAl13Ni3 (wt %) shape memory alloy produced by induction melting,” Iran. J. Sci. Technol., Trans. A: Sci. 44 (4), 1167–1175 (2020).

    Article  Google Scholar 

  29. I. N. Qader, E. Ercan, B. A. M. Faraj, M. Kok, F. Dagdelen, and Y. Aydogdu, “The influence of time-dependent aging process on the thermodynamic parameters and microstructures of quaternary Cu79–Al12–Ni4–Nb5 (wt %) shape memory alloy,” Iran. J. Sci. Technol., Trans. A: Sci. 44 (3), 903–910 (2020).

    Article  Google Scholar 

  30. M. Kök, H. S. A. Zardawi, I. N. Qader, and M. Sait Kanca, “The effects of cobalt elements addition on Ti2Ni phases, thermodynamics parameters, crystal structure and transformation temperature of NiTi shape memory alloys,” Eur. Phys. J. Plus 134 (5), 197 (2019).

    Article  Google Scholar 

  31. E. Acar, M. Kok, and I. N. Qader, “Exploring surface oxidation behavior of NiTi–V alloys,” Eur. Phys. J. Plus 135 (1), 58 (2020).

    Article  CAS  Google Scholar 

  32. S. S. Mohammed, M. Kök, Z. D. Çirak, I. N. Qader, F. Dağdelen, and H. S. A. Zardawi, “The relationship between cobalt amount and oxidation parameters in NiTiCo shape memory alloys,” Phys. Met. Metallogr. 121 (14), 1411–1417 (2020).

    Article  Google Scholar 

  33. F. Dagdelen and Y. Aydogdu, “Transformation behavior in NiTi–20Ta and NiTi–20Nb SMAs,” J. Therm. Anal. Calorim. 136 (2), 637–642 (2019).

    Article  CAS  Google Scholar 

  34. G. A. Sun, X. L. Wang, Y. D. Wang, W. C. Woo, H. Wang, X. P. Liu, B. Chen, Y. Q. Fu, L. S. Sheng, and Y. Ren, “In-situ high-energy synchrotron X-ray diffraction study of micromechanical behavior of multiple phases in Ni47Ti44Nb9 shape memory alloy,” Mater. Sci. Eng., A 560, 458–465 (2013).

    Article  CAS  Google Scholar 

  35. S. Buytoz, F. Dagdelen, I. N. Qader, M. Kok, and B. Tanyildizi, “Microstructure analysis and thermal characteristics of NiTiHf shape memory alloy with different composition,” Met. Mater. Int. 27, 767–778 (2021).

    Article  CAS  Google Scholar 

  36. E. Balci, F. Dagdelen, I. N. Qader, and M. Kok, “Effects of substituting Nb with V on thermal analysis and biocompatibility assessment of quaternary NiTiNbV SMA,” Eur. Phys. J. Plus 136 (2), 145 (2021).

    Article  CAS  Google Scholar 

  37. I. N. Qader, E. Öner, M. Kok, S. S. Mohammed, F. Dağdelen, M. S. Kanca, and Y. Aydoğdu, “Mechanical and thermal behavior of Cu84–xAl13Ni3Hfx shape memory alloys,” Iran. J. Sci. Technol., Trans. A: Sci. 45 (1), 343–349 (2021).

    Article  Google Scholar 

  38. K. Rahmani, A. Sadooghi, and S. J. Hashemi, “The effect of Al2O3 content on tribology and corrosion properties of Mg–Al2O3 nanocomposites produced by single and double-action press,” Mater. Chem. Phys. 250, 123058 (2020).

    Article  CAS  Google Scholar 

  39. R. Baboian, MNL20-2ND: Corrosion Tests and Standards: Application and Interpretation (ASTM International, West Conshohocken, PA, 2005).

    Book  Google Scholar 

  40. A. M. Najib, M. Z. Abdullah, A. A. Saad, Z. Samsudin, and F. Che Ani, “Numerical simulation of self-alignment of chip resistor components for different silver content during reflow soldering,” Microelectron. Reliabil. 79, 69–78 (2017).

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by TÜBİTAK under Project no. 119M300.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Dagdelen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dagdelen, F., Balci, E., Qader, I.N. et al. Effects of Substituting Nb with Ta on Microstructure and Thermal Properties of Novel Biocompatible TiNiNbTa Shape Memory Alloys. Phys. Metals Metallogr. 122, 1572–1580 (2021). https://doi.org/10.1134/S0031918X21140209

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21140209

Keywords:

Navigation