Skip to main content
Log in

Structure and Properties of the Al–1% Ca–0.5% Fe–0.25% Si–0.5% Zr Alloy Produced via Casting in an Electromagnetic Crystallizer

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The structure, mechanical properties, and electrical resistivity of a cold-rolled wire made of the Al–1% Ca–0.5% Fe–0.25% Si–0.5% Zr alloy produced via casting in an electromagnetic crystallizer are analyzed. A heat-resistant wire made of the alloy Al–7% REM (01417), which was developed for the granular technology of powder metallurgy (RS/PM), is used as a reference. It is shown that the addition of calcium in the presence of iron and silicon makes it possible to obtain a phase composition that provides a thermal stability of up to 300°C inclusive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. M. Eger, A. M. Matveenko, and I. A. Shatalov, Basics of Aviation Engineering, 2nd ed., Ed. by I. A. Shatalov (MAI, Moscow, 1999) [in Russian].

  2. A A. Avdulov, N. V. Sergeev, I. S. Gudkov, V. N. Timofeev, Yu. V. Gorokhov, and Yu. S. Avdulova, “Wire production development of special aluminum alloys based on electromagnetic mold casting method and continuous extrusion process known as conform,” J. Sib. Fed. Univ. Eng. Technol. 10, 85–94 (2017). https://doi.org/10.17516/1999-494X-2017-10-1-85-94

    Article  Google Scholar 

  3. Technical Handbook: Cables, Wires, Materials for Wire Industy, 3rd ed. (NKP “Ellips”, Moscow, 2006), p. 360 [in Russian].

  4. B. K. Vul’f and K. P. Romadin, Aviation Materials Science, 3rd ed. (Mashinostroenie, Moscow, 1967) [in Russian].

    Google Scholar 

  5. Yu. V. Matveev, V. P. Gavrilova, and V. V. Baranov, “Lightweight conductive materials for aviaprods,” Kabeli i Provoda, No. 5, 22–23 (2006).

    Google Scholar 

  6. N. A. Belov, A. N. Alabin, and A. Y. Prokhorov, “The influence that a zirconium additive has on the strength and electrical resistance of cold-rolled aluminum sheets,” Russ. J. Non-Ferrous Met. 50, 357–362 (2009). https://doi.org/10.3103/S1067821209040099

    Article  Google Scholar 

  7. V. I. Dobatkin, V. I. Elagin, and V. M. Fedorov. Fast Crystallized Aluminum Alloys (VILS, Moscow, 1995), p. 341 [in Russian].

  8. V. I. Dobatkin, V. I. Elagin, and V. M. Fedorov, “Granulated aluminum alloys with special physical properties,” Aviatsionnaya Promyshlennost’, No. 7, 55–57 (1990).

  9. M. V. Pervukhin and V. N. Timofeev, Modern Electrotechnologies for Production of Aluminum Alloys (SFU, Krasnoyarsk, 2015) [in Russian].

    Google Scholar 

  10. N. O. Korotkova, N. A. Belov, V. N. Timofeev, M. M. Motkov, and S. O. Cherkasov, “Influence of heat treatment on the structure and properties of an Al–7% REM conductive aluminum alloy casted in an electromagnetic crystallizer,” Phys. Met. Metallogr. 121, 182–188 (2020). https://doi.org/10.1134/S0031918X2002009X

    Article  Google Scholar 

  11. N. O. Korotkova, N. A. Belov, N. N. Avksentieva, and A. A. Aksenov, “Effect of calcium additives on the phase composition and physicomechanical properties of a conductive alloy Al–0.5% Fe–0.2% Si–0.2% Zr–0.1% Sc,” Phys. Met. Metallogr. 121, 95–101 (2020). https://doi.org/10.1134/S0031918X20010093

    Article  CAS  Google Scholar 

  12. N. A. Belov, T. K. Akopyan, N. O. Korotkova, E. A. Naumova, A. M. Pesin, and N. V. Letyagin, “Structure and properties of Al–Ca(Fe,Si,Zr,Sc) wire alloy manufactured from as-cast billet,” JOM 72, 3760–3768 (2020). https://doi.org/10.1007/s11837-020-04342-x

    Article  CAS  Google Scholar 

  13. E. Çadırl, H. Tecer, M. Sahin, E. Yılmaz, T. Kırındı, and M. Gündüz, “Effect of heat treatments on the microhardness and tensile strength of Al–0.25 wt % Zr alloy,” J. Alloys Compd. 632, 229–237 (2015). https://doi.org/10.1016/j.jallcom.2015.01.193

    Article  CAS  Google Scholar 

  14. T. S. Orlova, A. M. Mavlyutov, T. A. Latynina, E. V. Ubyivovk, M. Y. Murashkin, R. Schneider, D. Gerthsen, and R. Z. Valiev, “Influence of severe plastic deformation on microstructure strength and electrical conductivity of aged Al–0.4Zr(Wt. %) alloy,” Rev. Adv. Mater. Sci. 55, 92–101 (2018). https://doi.org/10.1515/rams-2018-0032

    Article  CAS  Google Scholar 

  15. W. Yuan and Zh. Liang, “Effect of Zr addition on properties of Al–Mg–Si aluminum alloy used for all aluminum alloy conductor,” Mater. Des. 32, Nos. 8–9, 4195–4200 (2011). https://doi.org/10.1016/j.matdes.2011.04.034

    Article  CAS  Google Scholar 

  16. K. E. Knipling, D. C. Dunand, and D. N. Seidman, “Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during isothermal aging at 375–425°C,” Acta Mater. 56, 114–127 (2008). https://doi.org/10.1016/j.actamat.2007.09.004

    Article  CAS  Google Scholar 

  17. N. A. Belov, A. N. Alabin, and A. R. Teleuova, “Comparative analysis of alloying additives as applied to the production of heat-resistant aluminum-base wires,” Met. Sci. Heat. Treat. 53, 455–459 (2012). https://doi.org/10.1007/s11041-012-9415-5

    Article  CAS  Google Scholar 

  18. N. A. Belov, E. A. Naumova, T. K. Akopyan, and V. V. Doroshenko, “Phase diagram of the Al–Ca–Fe–Si system and its application for the design of aluminum matrix composites,” JOM 70, 2710–2715 (2018). https://doi.org/10.1007/s11837-018-2948-3

    Article  CAS  Google Scholar 

  19. N. A. Belov, E. A. Naumova, and T. K. Akopyan, Eutectic Alloys Based on Aluminum: New Systems of Alloying (Ruda i Metally, Moscow, 2016) [in Russian].

    Google Scholar 

  20. J. P. Brubak, B. Eftestol, and F. Ladiszlaldesz, U.S. Patent No. 5067994 (26 November 1991).

  21. S. Kenichi, Y. Kazuhisa, H. Yasumasa, K. Takasi, and Y. Minoru, U.S. Patent No. 4402763 (03 September 1983).

  22. M. Jabłoński, T. A. Knych, and B. Smyrak, “New aluminium alloys for electrical wires of fine diameter for automotive industry,” Arch. Metall. Mater. 54, No. 3, 671–676 (2009).

    Google Scholar 

  23. V. V. Teleshov, “Fundamental regularity of structure change during crystallization of aluminum alloys with different cooling rates,” Tekhnologiya Legkikh Splavov, No. 2, 13–18 (2015).

    Google Scholar 

  24. N. A. Belov, E. A. Naumova, V. D. Ilyukhin, and V. V. Doroshenko, “Structure and mechanical properties of Al–6% Ca–1% Fe alloy foundry goods, obtained by die casting,” Tsvet. Met. 3, 55–61 (2017). https://doi.org/10.17580/tsm.2017.03.11

    Article  CAS  Google Scholar 

  25. W. Lefebvre, F. Danoix, H. Hallem, B. Forbord, A. Bostel, and K. Marthinsen, “Precipitation kinetic of Al3(Sc,Zr) dispersoids in aluminium,” J. Alloys Compd. 470, 107–110 (2009). https://doi.org/10.1016/j.jallcom.2008.02.043

    Article  CAS  Google Scholar 

  26. E. Clouet, A. Barbu, L. Lae, and G. Martin, “Precipitation kinetics of Al3Zr and Al3Sc in aluminum alloys modeled with cluster dynamics,” Acta Mater. 53, 2313–2325 (2005). https://doi.org/10.1016/j.actamat.2005.01.038

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by a grant from the Russian Science Foundation (project no. 20-79-00239).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. O. Korotkova.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korotkova, N.O., Cherkasov, S.O., Timofeev, V.N. et al. Structure and Properties of the Al–1% Ca–0.5% Fe–0.25% Si–0.5% Zr Alloy Produced via Casting in an Electromagnetic Crystallizer. Phys. Metals Metallogr. 122, 725–730 (2021). https://doi.org/10.1134/S0031918X21060065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21060065

Keywords:

Navigation