Skip to main content
Log in

Mechanisms of Superplastic High-Rate Deformation in the Al–Mg–Zn–Fe–Ni–Zr–Sc Alloy

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The microstructure and acting superplastic deformation mechanisms in the high-strength Al–7.0% Zn–2.7% Mg–1.0% Ni–0.9% Fe alloy low-doped with Sc and Zr upon deformation at a temperature of 480°С and a strain rate of 1 × 10–2 s–1 at a stable flow stage in a true strain range of 1.1 to 1.6 have been investigated. To evaluate the contributions of superplastic deformation mechanisms to the total elongation, marker grids have been applied on the surface by ion etching, and microstructural changes of the surface have been analyzed. Grain boundary sliding and intragranular deformation play dominant roles. The contribution of each mechanism is 35–40%. The remaining 25% belongs to the diffusional creep mechanism, which is determined from the size of striated zones formed at the transverse grain boundaries on the surface of a deformed sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. Pilling and N. Ridley, Superplasticity in Crystalline Solids (The Institute of Metals, London, 1989).

    Google Scholar 

  2. T. G. Nieh, J. Wadsworth, and O. D. Sherby, Superplasticity in Metals and Ceramics (Cambridge, New York, 1997).

    Book  Google Scholar 

  3. R. D. Wood and J. Bonet, “A review of the numerical analysis of superplastic forming,” J. Mater. Process. Technol. 60, 45–53 (1996).

    Article  Google Scholar 

  4. K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, and P. Veyssière, Encyclopedia of Materials: Science and Technology (Second Edition), Chapter: W. Koehler, B. Plege, and K. F. Sahm, Metal Forming: Specialized Procedures for the Aircraft Industry (Elsevier, Oxford, 2001) 10388 (5427–5433).

  5. M. A. Rust and R. I. Todd, “Surface studies of Region II superplasticity of AA5083 in shear: Confirmation of diffusion creep, grain neighbor switching and absence of dislocation activity,” Acta Mater. 59, 5159–5170 (2011).

    Article  CAS  Google Scholar 

  6. D. V. Dudina, R. S. Mishra, and A. K. Mukherjee, “Superplasticity: Where the Deformation mechanism is also an industry,” in Reference Module in Materials Science and Materials Engineering, Ed. by S. Hashmi (Elsevier, Oxford, 2016), pp. 1–8.

    Google Scholar 

  7. O. A. Kaibyshev, Superplasticity of Industrial Alloys (Metallurgiya, Moscow, 1984) [in Russian].

    Google Scholar 

  8. O. A. Kaibyshev, Plasticity and Superplasticity of Metals (Metallurgiya, Moscow, 1975) [in Russian].

    Google Scholar 

  9. I. I. Novikov and V. K. Portnoi, “Features of superplastic deformation of some aluminum alloys,” Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., No. 4, 4–11 (2001).

  10. P. S. Bate, F. J. Humphreys, N. Ridley, and B. Zhang, “Microstructure and texture evolution in the tension of superplastic Al–6Cu–0.4Zr,” Acta Mater. 53, 3059–3069 (2005).

    Article  CAS  Google Scholar 

  11. F. Musin, R. Kaibyshev, Y. Motohashi, and G. Itoh, “High strain rate superplasticity in a commercial Al–Mg–Sc alloy,” Scr. Mater. 50, 511–516 (2004).

    Article  CAS  Google Scholar 

  12. K. Sotoudeh and P. S. Bate, “Diffusion creep and superplasticity in aluminium alloys,” Acta Mater. 58, 1909–1920 (2010).

    Article  CAS  Google Scholar 

  13. M. F. Ashby and R. A. Verrall, “Diffusion accommodated flow and superplasticity,” Acta Metall. 21, 149–163 (1973).

    Article  CAS  Google Scholar 

  14. A. K. Mukherjee, “The rate controlling mechanism in superplasticity,” Mater. Sci. Eng. 8, 83–89 (1971).

    Article  CAS  Google Scholar 

  15. A. V. Mikhaylovskaya, O. A. Yakovtseva, I. S. Golovin, A. V. Pozdniakov, and V. K. Portnoy, “Superplastic deformation mechanisms in fine-grained Al–Mg based alloys,” Mater. Sci. Eng., A 627, 31–41 (2015).

    Article  CAS  Google Scholar 

  16. O. A. Yakovtseva, A. V. Mikhaylovskaya, V. S. Levchenko, A. V. Irzhak, and V. K. Portnoi, “Study of the acting mechanisms of superplastic deformation in Al–Mg–Mn-based alloys,” Phys. Met. Metallogr. 116, 908–916 (2015).

    Article  Google Scholar 

  17. A. V. Mikhaylovskaya, O. A. Yakovtseva, M. N. Sitkina, A. D. Kotov, A. V. Irzhak, S. V. Krymskiy, and V. K. Portnoy, “Comparison between superplastic deformation mechanisms at primary and steady stages of the fine grain AA7475 aluminium alloy,” Mater. Sci. Eng., A 718, 277–286 (2018).

    Article  CAS  Google Scholar 

  18. G. T. Langdon, “Grain boundary sliding revisited: Developments in sliding over four decades,” J. Mater. Sci. 41, 597–609 (2006).

    Article  CAS  Google Scholar 

  19. C. H. Hamilton, C. C. Bampton, and N. E. Paton, Superplasticity in high strength aluminium alloys, Proceedings of AIME Met. Soc. Conference on Superplastic Forming of Structural Alloys (San Diego, 1982).

  20. T. Sahraoui, M. Hadji, N. Bacha, and R. Badji, “Superplastic deformation behavior of 7075 aluminum alloy,” J. Mater. Eng. Perform. 12, 398–401 (2003).

    Article  CAS  Google Scholar 

  21. J. Liu and D. J. Chakrabarti, “Grain structure and microstructure evolution during superplastic forming of a high strength Al–Zn–Mg–Cu alloy,” Acta Mater. 44, 4641–4661 (1996).

    Google Scholar 

  22. H. E. Adabbo, G. Gonzalez-Doncel, O. A. Ruano, J. M. Belzunce, and O. D. Sherby, “Strain hardening during superplastic deformation of Al-7475 alloy,” Mater. Res. Soc. 3, 587–594 (1989).

    Article  Google Scholar 

  23. Z. P. Chen and P. F. Thomson, “A study of post-form static and fatigue properties of superplastic 7475-SPF and 5083-SPF aluminum alloys,” J. Mater. Process. Technol. 148, 204–219 (2004).

    Article  CAS  Google Scholar 

  24. C. Chen and M. Tan, “Cavity growth and filament formation of superplastically deformed Al 7475 alloy,” Mater. Sci. Eng., A 298, 235–244 (2001).

    Article  Google Scholar 

  25. A. V. Mikhaylovskaya, A. D. Kotov, A. V. Pozdniakov, and V. K. Portnoy, “A high-strength aluminum-based alloy with advanced superplasticity,” J. Alloys Compd. 599, 139–144 (2014).

    Article  CAS  Google Scholar 

  26. A. V. Mikhaylovskaya, O. A. Yakovtseva, V. V. Cheverikin, A. D. Kotov, and V. K. Portnoy, “Superplastic behaviour of Al–Mg–Zn–Zr–Sc-based alloys at high strain rates,” Mater. Sci. Eng., A 659, 225–233 (2016).

    Article  CAS  Google Scholar 

  27. A. D. Kotov, A. V. Mikhaylovskaya, and V. K. Portnoy, “Effect of the solid-solution composition on the superplasticity characteristics of Al–Zn–Mg–Cu–Ni–Zr alloys,” Phys. Met. Metallogr. 115, 730–735 (2014).

    Article  Google Scholar 

  28. A. D. Kotov, A. V. Mikhaylovskaya, A. A. Borisov, O. A. Yakovtseva, and V. K. Portnoy, “High-strain-rate superplasticity of the Al–Zn–Mg–Cu alloys with Fe and Ni,” Phys. Met. Metallogr. 118, 913–921 (2017).

    Article  CAS  Google Scholar 

  29. V. V. Cheverikin, N. A. Belov, D. G. Eskin, and A. N. Turchin, “Effect of Al3Ni and Mg2Si eutectic phases on casting properties and hardening of an Al–7% Zn–3% Mg alloy,” Mater. Sci. Forum 519–521, 413–418 (2006).

    Google Scholar 

  30. V. K. Portnoy and I. I. Novikov, “Evaluation of grain boundary sliding contribution to the total strain during superplastic deformation,” Scr. Mater. 40, 39–43 (1998).

    Article  Google Scholar 

  31. P. K. Rout, M. M. Ghosh, and K. S. Ghosh, “Microstructural, mechanical and electro-chemical behavior of a 7017Al–Zn–Mg alloy of different tempers,” Mater. Charact. 104, 49–60 (2015).

    Article  CAS  Google Scholar 

  32. Yu. A. Filatov, V. I. Yelagin, and V. V. Zakharov, “New Al–Mg–Sc alloys,” Mater. Sci. Eng., A 280, 97–101 (2000).

    Article  Google Scholar 

  33. V. S. Zolotorevskiy, R. I. Dobrojinskaja, V. V. Cheverikin, E. A. Khamnagdaeva, A. V. Pozdniakov, V. S. Levchenko, and E. S. Besogonova, “Evolution of structure and mechanical properties of Al–4.7Mg–0.32Mn–0.21Sc–0.09Zr alloy sheets after accumulated deformation during rolling,” Phys. Met. Metallogr. 117, 1163–1169 (2016).

    Article  CAS  Google Scholar 

  34. F. J. Humphreys, “Recrystallization mechanisms in two-phase alloys,” Met. Sci. 13, 136–145 (1979).

    Article  CAS  Google Scholar 

  35. F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed. (Elsevier, Oxford, 2004).

    Google Scholar 

  36. A. V. Pozdniakov, S. V. Makhov, and V. I. Napalkov, “Effect of impurities of Fe and Si on the structure and strengthening upon annealing of the Al–0.2% Zr–0.1% Sc alloys with and without Y additive,” Phys. Met. Metallogr. 118, 479–484 (2017).

    Article  CAS  Google Scholar 

  37. A. D. Kotov, A. V. Mikhaylovskaya, I. S. Golovin, and V. K. Portnoy, “Fine-grained structure and superplasticity of Al–Cu–Mg–Fe–Ni alloys,” Mater. Sci. Forum 735, 55–60 (2013).

    Article  CAS  Google Scholar 

  38. M. E. Van Dalen, T. Gyger, D. C. Dunand, and D. N. Seidman, “Effects of Yb and Zr microalloying additions on the microstructure and mechanical properties of dilute Al–Sc alloys,” Acta Mater. 59, 7615–7626 (2011).

    Article  CAS  Google Scholar 

  39. I. I. Novikov and V. K. Portnoi, Superplasticity of Alloys with Ultrafine Grains (Metallurgiya, Moscow, 1981) [in Russian].

    Google Scholar 

  40. C. L. Chen and M. J. Tan, “Effect of grain boundary character distribution (GBCD) on the cavitation behaviour during superplastic deformation of Al 7475,” Mater. Sci. Eng., A 338, 243–252 (2002).

    Article  Google Scholar 

  41. H. Masuda, H. Tobe, T. Hara, and E. Sato, “Three-dimensional characterization of superplastic grain boundary sliding inside Al–Zn–Mg–Cu alloy sheet,” Scr. Mater. 164, 82–85 (2019).

    Article  CAS  Google Scholar 

  42. J. M. Ford, J. Wheeler, and A. B. Movchan, “Computer simulation of grain-boundary diffusion creep,” Acta Mater. 50, 3941–3955 (2002).

    Article  CAS  Google Scholar 

  43. P. L. Blackwell and P. S. Bate, “Superplastic deformation without relative grain translation,” Mater. Sci. Forum 304–306, 189–194 (1999).

    Article  Google Scholar 

  44. J. C. Tan and M. J. Tan, “Superplasticity and grain boundary sliding characteristics in two stage deformation of Mg–3Al–1Zn alloy sheet,” Mater. Sci. Eng., A 339, 124–132 (2003).

    Article  Google Scholar 

  45. V. K. Portnoy, D. S. Rylov, V. S. Levchenko, and A. V. Mikhaylovskaya, “The influence of chromium on the structure and superplasticity of Al–Mg–Mn alloys,” J. Alloys Compd. 581, 313–317 (2013).

    Article  CAS  Google Scholar 

  46. A. A. Kishchik, A. V. Mikhaylovskaya, V. S. Levchenko, and V. K. Portnoy, “Formation of microstructure and the superplasticity of Al–Mg-based alloys,” Phys. Met. Metallogr. 118, 96–103 (2017).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Scientific Foundation (project no. 17-79-20426).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Mikhaylovskaya.

Additional information

Translated by T. Gapontseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovtseva, O.A., Kotov, A.D., Sitkina, M.N. et al. Mechanisms of Superplastic High-Rate Deformation in the Al–Mg–Zn–Fe–Ni–Zr–Sc Alloy. Phys. Metals Metallogr. 120, 1014–1020 (2019). https://doi.org/10.1134/S0031918X19100156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X19100156

Keywords:

Navigation