Skip to main content
Log in

Evolution of the Structure of Cu–1% Sn Bronze under High Pressure Torsion and Subsequent Annealing

  • Structure, Phase Transformations, and Diffusion
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The evolution of the structure of tin bronze under the room-temperature high-pressure torsion with different degrees of deformation and the subsequent annealing has been investigated. The thermal stability of the structure formed, namely, its behavior upon annealing in the temperature range of 150–400°C has been studied. The possibility of alloying copper with tin has been analyzed with the purpose of obtaining a thermally stable nanostructure with high strength characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Z. Valiev, “Nanostructuring of metals by severe plastic deformation for advanced properties,” Nature Mater. 3, 511–516 (2004).

    Article  Google Scholar 

  2. R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer, and Y. T. Zhu, “Producing bulk ultrafine-grained materials by severe plastic deformation,” JOM 58, 33–39 (2006).

    Article  Google Scholar 

  3. S. Qu, X. H. An, H. J. Yang, C. X. Huang, G. Yang, Q. S. Zang, Z. G. Wang, S. D. Wu, and Z. F. Zhang, “Microstructural evolution and mechanical properties of Cu–Al alloys subjected to equal-channel angular pressing,” Acta Mater. 57, 1586–1601 (2009).

    Article  Google Scholar 

  4. Y. Estrin and A. Vinogradov, “Extreme grain refinement by severe plastic deformation: A wealth of challenging science,” Acta Mater. 61, 782–817 (2013).

    Article  Google Scholar 

  5. M. Kawasaki and T. G. Langdon, “Principles of superplasticity in ultrafine-grained materials,” J. Mater. Sci. 42, 1782–1796 (2007).

    Article  Google Scholar 

  6. A. Hohenwarter, C. Kammerhofer, and R. Pippan, “The ductile to brittle transition of ultrafine-grained armco iron: an experimental study,” J. Mater. Sci. 45, 4805–4812 (2010).

    Article  Google Scholar 

  7. S. O. Rogachev, A. B. Rozhnov, S. A. Nikulin, O. V. Rybal’chenko, M. V. Gorshenkov, V. G. Chzhen, and S. V. Dobatkin, “Effect of torsion conditions under high pressure on the structure and strengthening of the Zr–1% Nb alloy,” Phys. Met. Metallogr. 117, 371–377 (2016).

    Article  Google Scholar 

  8. A. P. Zhilyaev and T. G. Langdon, “Using high-pressure torsion for metal processing: fundamentals and applications,” Prog. Mater. Sci. 53, 893–979 (2008).

    Article  Google Scholar 

  9. R. Pippan, S. Scheriau, A. Hohenwarte, and M. Hafok, “Advantages and limitations of HPT: A review,” Mater. Sci. Forum 584–586, 16–21 (2008).

    Article  Google Scholar 

  10. D. K. Orlova, T. I. Chashchukhina, L. M. Voronova, and M. V. Degtyarev, “Effect of temperature–strainrate conditions of deformation on structure formation in commercially pure copper deformed in Bridgman anvils,” Phys. Met. Metallogr. 116, 951–958 (2015).

    Article  Google Scholar 

  11. V. V. Sagaradze, V. A. Shabashov, K. A. Kozlov, N. V. Kataeva, V. A. Zavalishin, S. V. Afanas’ev, A. E. Zamatovskii, A. V. Litvinov, and K. A. Lyashkov, “Intensification of deformation-induced diffusion processes of the dissolution of intermetallic compounds in iron-based alloys at cryogenic temperatures,” Phys. Met. Metallogr., 116, 1002–1014 (2015).

    Article  Google Scholar 

  12. A. Vorhauer and R. Pippan, “Microstructure and thermal stability of tungsten based materials processed by means of severe plastic deformation,” Mater. Sci. Forum 426–432, 2747–2752 (2003).

    Article  Google Scholar 

  13. V. V. Popov, R. Z. Valiev, E. N. Popova, A. V. Sergeev, A. V. Stolbovsky, and V. U. Kazikhanov, “Structure and properties of grain boundaries in submicrocrystalline W obtained by severe plastic deformation,” Defect Diffus. Forum 283–286, 629–638 (2009).

    Article  Google Scholar 

  14. V. V. Popov, G. P. Grabovetskaya, A. V. Sergeev, I. P. Mishin, A. N. Timofeev, and E. V. Kovalenko, “Structure and properties of grain boundaries in submicrocrystalline molybdenum prepared by high-pressure torsion,” Phys. Met. Metallogr. 109, 556–562 (2010).

    Article  Google Scholar 

  15. E. N. Popova, V. V. Popov, E. P. Romanov, and V. P. Pilyugin, “Thermal stability of nanocrystalline Nb produced by severe plastic deformation,” Phys. Met. Metallogr. 101, 52–57 (2006).

    Article  Google Scholar 

  16. E. N. Popova, V. V. Popov, E. P. Romanov, and V. P. Pilyugin, “Effect of the degree of deformation on the structure and thermal stability of nanocrystalline niobium produced by high-pressure torsion,” Phys. Met. Metallogr. 103, 407–413 (2007).

    Article  Google Scholar 

  17. V. V. Popov, E. N. Popova, and A. V. Stolbovskiy, “Nanostructuring Nb by various techniques of severe plastic deformation,” Mater. Sci. Eng., A 539, 22–29 (2012).

    Article  Google Scholar 

  18. T. M. Gapontseva, M. V. Degtyarev, V. P. Pilyugin, T. I. Chashchukhina, L. M. Voronova, and A. M. Patselov, “Effect of temperature of HPT deformation and the initial orientation on the structural evolution in single-crystal niobium,” Phys. Met. Metallogr. 117, 336–347 (2016).

    Article  Google Scholar 

  19. H. W. Zhang and X. Huang, and N. Hansen, “Evolution of microstructural parameters and flow stresses toward limits in nickel deformed to ultra-high strains,” Acta Mater. 56, 5451–5465 (2008).

    Article  Google Scholar 

  20. H. W. Zhang, X. Huang, R. Pippan, and N. Hansen, “Thermal behavior of Ni (99.967% and 99.5% purity) deformed to an ultra-high strain by high pressure torsion,” Acta Mater. 58, 1698–1707 (2010).

    Article  Google Scholar 

  21. Yu. G. Krasnoperova, L. M. Voronova, M. V. Degtyarev, T. I. Chashchukhina, and N. N. Resnina, “Recrystallization of nickel upon heating below the temperature of thermoactivated nucleation,” Phys. Met. Metallogr. 116, 79–86 (2015).

    Article  Google Scholar 

  22. Yu. G. Krasnoperova, M. V. Degtyarev, L. M. Voronova, and T. I. Chashchukhina, “Effect of annealing temperature on the recrystallization of nickel with different ultradisperse structures,” Phys. Met. Metallogr. 117, 267–274 (2016).

    Article  Google Scholar 

  23. V. V. Popov, E. N. Popova, A. V. Stolbovskii, V. P. Pilyugin, and N. K. Arkhipova, “Nanostructurization of Nb by High-Pressure Torsion in Liquid Nitrogen and the Thermal Stability of the Structure Obtained,” Phys. Met. Metallogr. 113, 295–301 (2012).

    Article  Google Scholar 

  24. V. V. Popov, E. N. Popova, A. V. Stolbovskiy, and V. P. Pilyugin, “Thermal Stability of Nanocrystalline Structure in Niobium Processed by High Pressure Torsion at Cryogenic Temperatures,” Mater. Sci. Eng., A 528, 1491–1496 (2011).

    Article  Google Scholar 

  25. G. B. Rathmayr and R. Pippan, “Influence of impurities and deformation temperature on the saturation microstructure and ductility of HPT-deformed nickel,” Acta Mater. 59, 7228–7240 (2011).

    Article  Google Scholar 

  26. V. V. Popov, E. N. Popova, D. D. Kuznetsov, A. V. Stolbovskii, and V. P. Pilyugin, “Thermal stability of nickel structure obtained by high-pressure torsion in liquid nitrogen”, Phys. Met. Metallogr. 115, 682–691 (2015).

    Article  Google Scholar 

  27. V. V. Popov, A. V. Stolbovsky, E. N. Popova, and V. P. Pilyugin, “Structure and thermal stability of Cu after severe plastic deformation,” Defect Diffus. Forum 297–301, 1312–1321 (2010).

    Article  Google Scholar 

  28. A. V. Stolbovsky, V. V. Popov, E. N. Popova, and V. P. Pilyugin, “Structure, thermal stability, and state of grain boundaries of copper subjected to high-pressure torsion at cryogenic temperatures,” Bull. Russ. Acad. Sci.: Phys. 78, 908–916 (2014).

    Article  Google Scholar 

  29. V. V. Popov, E. N. Popova, V. P. Pilyugin, D. D. Kuznetsov, and A. V. Stolbovsky, “Nanostructuring of pure metals by severe plastic deformation at cryogenic temperatures,” IOP Conf. Ser.: Mater. Sci. Eng. 63, 012096 (2014).

    Article  Google Scholar 

  30. R. Pippan, S. Scheriau, A. Taylor, M. Hafok, A. Hohenwarter, and A. Bachmaier, “Saturation of fragmentation during severe plastic deformation,” Ann. Rev. Mater. Res. 40, 319–343 (2010).

    Article  Google Scholar 

  31. K. Oh-ishi, Z. Horita, D. J. Smith, R. Z. Valiev, and M. Nemoto, T. G. Langdon, “Fabrication and thermal stability of a nanocrystalline Ni–Al–Cr alloy: Comparison with pure Cu and Ni,” J. Mater. Res. 14, 4200–4207 (1999).

    Article  Google Scholar 

  32. P. V. Kuznetsov, T. V. Rakhmatulina, I. V. Belyaeva and A. V. Korznikov, “Energy of Internal Interfaces as a Characteristic of the Structural Evolution of Ultrafine-Grained Copper and Nickel after Annealing,” Phys. Met. Metallogr. 118, 241–248 (2017).

    Article  Google Scholar 

  33. T. N. Kon’kova, S. Yu. Mironov, and A. V. Korznikov, “Anomalous Growth of Grain Size in Criogenicdeformed Copper,” Fiz. Mezomekh. 14, 29–37 (2011).

    Google Scholar 

  34. T. N. Kon’kova, S. Yu. Mironov, and A. V. Korznikov, “Room-temperature instability of the structure of copper deformed at a cryogenic temperature,” Russian Metallurgy (Metally) 2011, 689–698 (2011).

    Article  Google Scholar 

  35. H. W. Zhang, K. Lu, R. Pippan, X. Huang, N. Hansen, “Enhancement of Strength and Stability of Nanostructured Ni by Small Amounts of Solutes,” Scr. Mater. 65, 481–484 (2011).

    Article  Google Scholar 

  36. V. V. Rybin, N. Yu. Zolotorevskii, and E. A. Ushanova, “Fragmentation of Crystals upon Deformation Twinning and Dynamic Recrystallization”, Phys. Met. Metallogr., 116, 730–744 (2015).

    Article  Google Scholar 

  37. A. V. Stolbovskii, V. V. Popov, and E. N. Popova, “Structure and Thermal Stability of Tin Bronze, Nanostructured by High-pressure Torsion,” Diagnostics, Resource and Mechanics of Materials and Structure, No. 5, 118–132 (2015).

    Article  Google Scholar 

  38. A. P. Zhilyaev, S. Lee, G. V. Nurislamova, R. Z. Valiev, and T. G. Langton, “Microhardness and Microstructural Evolution in Pure Nickel During High Pressure Torsion,” Scr. Mater. 44, 2753–2758 (2001).

    Article  Google Scholar 

  39. A. N. Tyumentsev, I. A. Ditenberg, Yu. P. Pinzhin, A. D. Korotaev, and R. Z. Valiev, “Microstructure and Mechanisms of Its Formation in Submicrocrystalline Copper Produced by Severe Plastic Deformation,” Phys. Met. Metallogr. 96, 378 (2003).

    Google Scholar 

  40. T. Hebesberger, H. P. Stuwe, A. Vorhauer, F. Wetscher, and R. Pippan, “Structure of Cu Deformed by High Pressure Torsion,” Acta Mater. 53, 393–402 (2005).

    Article  Google Scholar 

  41. V. V. Popov, A. V. Sergeev, G. P. Grabovetskaya, and I. P. Mishin, “Structure, Thermal Stability and Properties of Grain Boundaries of Submicrocrystalline Mo Obtained by Severe Plastic Deformation,” Defect Diffus. Forum 326–328, 674–681 (2012).

    Article  Google Scholar 

  42. R. Wadsack, R. Pippan, and B. Schedler, “Structural Refinement of Chromium by Severe Plastic Deformation,” Fusion Eng. Des. 66–68, 265–269 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Popov.

Additional information

Original Russian Text © V.V. Popov, E.N. Popova, A.V. Stolbovsky, R.M. Falahutdinov, 2018, published in Fizika Metallov i Metallovedenie, 2018, Vol. 119, No. 4, pp. 377–386.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, V.V., Popova, E.N., Stolbovsky, A.V. et al. Evolution of the Structure of Cu–1% Sn Bronze under High Pressure Torsion and Subsequent Annealing. Phys. Metals Metallogr. 119, 358–367 (2018). https://doi.org/10.1134/S0031918X18040154

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X18040154

Keywords

Navigation