Skip to main content
Log in

Giant Magnetoresistance of Metallic Exchange-Coupled Multilayers and Spin Valves

  • Electrical and Magnetic Properties
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The microstructure and the magnetic and magnetotransport properties have been investigated depending on the types of the magnetic and nonmagnetic materials, composition, nanostructure, and regimes of thermomagnetic treatments for two types of metallic nanostructures, namely, magnetic multilayers and spin valves, which exhibit the effect of a giant magnetoresistance (GMR). Magnetosensitive materials that are promising for the applications in microelectronics have been synthesized: CoFe/Cu multilayers with record values of the GMR effect (81%); NiFeCo/Cu multilayers with a sensitivity of 0.5%/Oe; and microobjects prepared on the basis of spin valves, which possess the anhysteretic field dependence of the magnetoresistance and a GMR effect equal to 9%. Special attention is given to the methods of decreasing hysteresis. A comparison of the obtained results with the results for similar types of materials published earlier has been carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Kuch, A. C. Marley, and S. S. P. Parkin, “Seeded Epitaxy of Co90 Fe10 /Cu Multilayers on MgO(001): Influence of Fe Seed Layer Thickness,” J. Appl. Phys. 83, 4709–4713 (1998).

    Article  CAS  Google Scholar 

  2. M. Vopsaroiu, D. Bozec, J. A. D. Matthew, S. M. Thompson, C. H. Marrows, M. Perez, “Contactless Magnetoresistance Studies of Co/Cu Multilayers Using the Infrared Magnetorefractive Effect,” Phys. Rev. B. 70, 214–423 (2004).

    Article  CAS  Google Scholar 

  3. D. Elefant, D. Tietjen, L. Loyen, I. Moench, C. M. Schneider, “Dominant Role of the Size Effect for Saturation Resistivity and Giant Magnetoresistance in Co/Cu Multilayers,” J. Appl. Phys. 89, 7118–7120 (2001).

    Article  CAS  Google Scholar 

  4. C. H. Marrows, N. Wiser, B. J. Hickey, T. P. A. Hase, B. K. Tanner, “Giant Magnetoresistance and Oscillatory Exchange Coupling in Disordered Co/Cu Multilayers,” J. Phys.: Condens. Matter 11, 81–88.

  5. N. Kataoka, K. Saito, and H. Fujimori, “Magnetoresistance of Co-X/Cu Multilayers,” J. Magn. Magn. Mater. 121, 383–385 (1993).

    Article  CAS  Google Scholar 

  6. Y. Saito, S. Hashimoto, and K. Inomata, “Giant Magnetoresistance in Co/Cu, Co9 Fe/Cu, and Co7.5 Fe2.5 /Cu Multilayers,” IEEE Trans. Magn 28, 2751–2753 (1992).

    Article  CAS  Google Scholar 

  7. D. Wang, J. Anderson, and J. M. Daughton, “Thermally Stable, Low Saturation Field, Low Hysteresis, High GMR CoFe/Cu Multilayers,” IEEE Trans. Magn 33, 3520–3522 (1997).

    Article  CAS  Google Scholar 

  8. H. Kano, Y. Iwasaki, K. Hayashi, and K. Aso, “Magnetoresistance of Co-X/Cu (X= Fe, Ni) Multilayers,” J. Magn. Magn. Mater. 126, 445–447 (1993).

    Article  CAS  Google Scholar 

  9. M. A. Milyaev, V. V. Proglyado, T. P. Krinitsina, N. S. Bannikova, V. V. Ustinov, “Giant Drop of Magnetic Hysteresis with Decreasing Thickness of Cr-Buffer Layer of CoFe/Cu Superlattices,” Solid State Phenom. 168–169, 303–306 (2011).

    Google Scholar 

  10. M. A. Milyaev, V. V. Proglyado, T. P. Krinitsina, A. M. Burkhanov, N. S. Bannikova, V. V. Ustinov, “Giant Changes in Magnetic and Magnetoresistive Properties of CoFe/Cu Multilayers at Subnanosized Variations in the Thickness of the Chromium Buffer Layer,” Phys. Met. Metallog 112, 138–145 (2011).

    Article  Google Scholar 

  11. S. Gangopadhyay, J. X. Shen, M. T. Kief, J. A. Barnard, M. R. Parker, “Giant Magnetoresistance in CoFe/Cu Multilayers with Different Buffer Layers and Substrates,” IEEE Trans. Magn 31, 3933–3935 (1995).

    Article  CAS  Google Scholar 

  12. H. Kanai and R. L. White, “Magnetoresistance and Structural Properties of CoFe/Cu Multilayers,” IEEE Trans. Magn 29, 2729–2731 (1993).

    Article  CAS  Google Scholar 

  13. Y. An, B. Dai, H. Zhang, Z. Mai, J. Cai, Z. Wu, “The Interfacial Structure and Degradation Mechanism of the GMR Effect in Co90 Fe10 /Cu and Ni70 Co30 /Cu Magnetic Multilayers,” J. Phys. D: Appl. Phys 39, 1711–1717 (2006).

    Article  CAS  Google Scholar 

  14. W. D. Doyle, H. Fujiwara, S. Hossain, A. Matsuzono, M. R. Parker, “High Frequency Permeability Measurements on Ni76 Fel0 Co14 /Cu Giant Magnetoresistive Multilayers,” IEEE Trans. Magn 30, 3828–3830 (1994).

    Article  CAS  Google Scholar 

  15. M. Matsui, M. Doi, and N. Shimizu, “Giant Magnetoresistance Effect of [bcc-Fe(M) /Cu](M = Co, Ni) Multilayers,” J. Mater. Sci. Technol 16, 186–190 (2000).

    CAS  Google Scholar 

  16. K. Wetzig and C. M. Schneider, Metal Based Thin Films for Electronics (WILEY_VCH GmbH & Co. KGaA, Weinheim (2003).

    Book  Google Scholar 

  17. N. S. Bannikova, M. A. Milyaev, L. I. Naumova, V. V. Proglyado, T. P. Krinitsina, T. A. Chernyshova, V. V. Ustinov, “Effect of Annealing Magnetoresistance and Microstructure of Multilayered CoFe/Cu Systems with Different Buffer Layer,” Phys. Met. Metallogr. 116, 156–161 (2015).

    Article  Google Scholar 

  18. M. Piecuch, “Diffusion in Multilayers,” Revue Phys. Appl 23, 1727–1732 (1988).

    Article  CAS  Google Scholar 

  19. E. B. Svedberg, K. J. Howard, M. C. Bonsagerand, B. B. Pant, A. G. Roy, D. E. Laughlin, “Interdiffusion in CoFe/Cu Multilayers and Its Application to Spin-Valve Structures for Data Storage,” J. Appl. Phys. 94, 1001–1006 (2003).

    Article  CAS  Google Scholar 

  20. N. S. Bannikova, M. A. Milyaev, L. I. Naumova, V. V. Proglyado, T. P. Krinitsina, I. Yu. Kamenskii, V. V. Ustinov, “Giant Magnetoresistance of CoFe/Cu Superlattices with the (Ni80 Fe20)60 Cr40 Buffer Layer,”} Phys. Met. Metallogr. 116, 987–992 (2015).

    Article  Google Scholar 

  21. W.-Y. Lee, M. F. Toney, P. Tameerug, E. Allen, D. Mauri, “High Magnetoresistance Permalloy Films Deposited on a Thin NiFeCr or NiCr Underlayer,” J. Appl. Phys. 87, 6992–6994 (2000).

    Article  CAS  Google Scholar 

  22. Y. An, J. Liu, and Y. Ma, “Influence of (Ni81 Fe19)100– x Cr x Seed Layer on Structure and Magnetic Properties of NiFe/PtMn Bilayers,”} J. Appl. Phys. 103, 013905 (2008).

    Article  CAS  Google Scholar 

  23. V. A. Vas’ko and M. T. Kief, “Effect of Grain Size on the Properties of the CoFe–NiFe/NiMn Top Spin Valve,” J. Appl. Phys. 93, 8409–8411 (2003).

    Article  CAS  Google Scholar 

  24. Y. Sugita, Y. Kawawake, M. Satomi, and H. Sakakima, “Thermal Stability of PtMn Based Synthetic Spin Valves Using Thin Oxide Layer,” J. Appl. Phys. 89, 6919–6921 (2001).

    Article  CAS  Google Scholar 

  25. X. Peng, A. Morrone, K. Nikolaev, M. Kief, M. Ostrowski, “Effect of Material Selection and Background Impurity on Interface Property and Resulted CIP-GMR Performance,” J. Magn. Magn. Mater. 321, 2902–2910 (2009).

    Article  CAS  Google Scholar 

  26. 26. E. B. Svedberg, K. J. Howard, M. C. Bonsager, B. B. Pant, A. G. Roy, D. E. Laughlin, “Diffusion in Co90 Fe10 /Ru Multilayers,” J. Appl. Phys. 94, 1993–1000 (2003).

    Google Scholar 

  27. S. Jo, “Magnetostriction and Stress of NiFeCr/(Cu/Co90 Fe10) × N/NiFeCr Multilayer Films,” J. Korean Magn. Soc 20 (1), 8–11 (2010).

    Article  Google Scholar 

  28. M. A. Seigler, “Current-In-Plane Giant Magnetoresistance Sensor Using a Thin Cu Spacer and Dual Nano-Oxide Layers with a DR Greater Than 20 Ohms/sSq,” IEEE Trans. Magn. 43, 651–656 (2007).

    Article  CAS  Google Scholar 

  29. M. A. Milyaev, V. V. Proglyado, T. P. Krinitsina, N. S. Bannikova, A. M. Burkhanov, V. V. Ustinov, “Degree of Perfection of the 〈111〉 Texture and the Hysteresis of Magnetoresistance in MnIr-Based Top Spin Valves,” Phys. Met. Metallogr. 114, 383–389 (2013).

    Article  Google Scholar 

  30. W. Zou, H. N. G. Wadley, X. W. Zhou, S. Ghosal, R. Kosut, D. Brownell, “Growth of Giant Magnetoresistance Multilayers: Effects of Processing Conditions During Radio-Frequency Diode Deposition,” J. Vac. Sci. Technol., A 19, 2414–2424 (2001).

    Article  CAS  Google Scholar 

  31. W. Zou, H. N. G. Wadley, X. W. Zhou, R. A. Johnson, D. Brownell, “Composition-Morphology-Property Relations For Giant Magnetoresistance Multilayers Grown by RF Diode Sputtering,” Mater. Res. Soc. Symp. Proc. 674 (2001).

  32. K. Meguro, S. Hirano, M. Jimbo, S. Tsunashima, S. Uchiyama, “Composition Dependence of Giant Magnetoresistance Effect in NiFeCo/Cu Multilayers,” J. Magn. Magn. Mater. 140–144, 601–602 (1995).

    Article  Google Scholar 

  33. G. Scheunert, O. Heinonen, R. Hardeman, A. Lapicki, M. Gubbins, R. M. Bouman, “A Review of High Magnetic Moment Thin Films for Microscale and Nanotechnology Applications,” Appl. Phys. Rev 3, 011301 (2016).

    Article  CAS  Google Scholar 

  34. M. R. Parker, S. Hossain, D. Seale, J. A. Barnard, M. Tan, H. Fujiwara, “Low-Field Giant Magnetoresistance in Co/Cu, CoFe/Cu and CoNiFe/Cu Multilayer Systems,” IEEE Trans. Magn 30, 358–363 (1994).

    Article  CAS  Google Scholar 

  35. M. Jimbo, S. Tsunashima, T. Kanda, S. Goto, S. Uchiyama, “Giant Magnetoresistance in Soft Magnetic NiFeCo/Cu Multilayers,” J. Appl. Phys. 74, 3341–3344 (1993).

    Article  CAS  Google Scholar 

  36. T. Kanda, M. Jimbo, S. Tsunashima, S. Goto, M. Kumazawa, S. Uchiyama, “Giant Magnetoresistance in NiFeCo/Cu Multilayers,” IEEE Trans. Magn. Jpn. 9 (1), 103–109 (1994).

    Article  Google Scholar 

  37. S. Hossain, D. Seale, G. Qiu, J. Jarratt, J. A. Barnard, H. Fujiwara, M. R. Parker, “Hysteresis Reduction in NiFeCo/Cu Multilayers Exhibiting Large Low-Field Giant Magnetoresistance,” J. Appl. Phys. 75, 7067–7069 (1994).

    Article  CAS  Google Scholar 

  38. D. M. Mtalsi, M. E. Harfaoui, A. Qachaou, M. Faris, J. B. Youssef, H. L. Gall, “Magnetic Layer Composition Effect on Giant Magnetoresistance in (NiFeCo/Cu) Multilayers,” Phys. Status Solidi A 187, 633–640 (2001).

    Article  CAS  Google Scholar 

  39. Z. D. Diao, S. Goto, K. Meguro, S. Hirano, M. Jimbo, “Role of the Buffer Layers in Determining the Antiferromagnetic Coupling and Magnetoresistance of NiFeCo/Cu Superlattices,” J. Appl. Phys. 81, 2327–2335 (1997).

    Article  CAS  Google Scholar 

  40. R. Nakatani, K. Hoshino, H. Hoshiya, and Y. Sugita, “Giant Magnetoresistance and Low Saturation Fields in Ni–Fe–Co/Cu Multilayers with NiO Buffer Layers,” Mater. Trans 37, 1710–1714 (1996).

    Article  CAS  Google Scholar 

  41. P. P. Freitas, R. Ferreira, S. Cardoso, and F. Cardoso, “Magnetoresistive Sensors,” J. Phys.: Condens. Matter 19, 1–21 (2007).

    Google Scholar 

  42. B. Dieny, V. S. Speriosu, S. S. P. Parkin, B. A. Gurney, D. R. Wilhoit, D. Mauri, “Giant Magnetoresistance in Soft Ferromagnetic Multilayers,” Phys. Rev. B: 43, 1297–1300 (1991).

    Article  CAS  Google Scholar 

  43. C.-L. Lee, A. Devasahayam, M. Mao, J. Kools, P. Cox, K. Masaryk, D. Mahenthiran, J. Munson, “Seed Layer Characterization for PtMn Bottom Spin-Filter Spin Valves,” J. Appl. Phys. 93, 8406–8408 (2003).

    Article  CAS  Google Scholar 

  44. Y. Kamiguchi, K. Saito, H. Iwasaki, M. Sahashi, M. Ouse, S. Nakamura, “Spin-Valve Thermal Stability: Giant Magnetoresistance and Soft Magnetic Properties of Co90 Fe10 /Cu Spin-Valve Structures,” J. Appl. Phys. 79, 6399–6401 (1996).

    Article  CAS  Google Scholar 

  45. X. Peng, A. Morrone, K. Nikolaev, M. Kief, M. Ostrowski, “Effect of Material Selection and Background Impurity on Interface Property and Resulted CIP-GMR Performance,” J. Magn. Magn. Mater. 321, 2902–2910 (2009).

    Article  CAS  Google Scholar 

  46. A. Maesaka, N. Sugawara, A. Okabe, and M. Itabashi, “Influence of Microstructure on Thermal Stability of Spin-Valve Multilayers,” J. Appl. Phys. 83, 7628–7634 (1998).

    Article  CAS  Google Scholar 

  47. S. S. P. Parkin, Z. G. Li, and D. J. Smith, “Giant Magnetoresistance in Antiferromagnetic Co/Cu Multilayers,” Appt. Phys. Lett 58, 2710–2712 (1991).

    Article  CAS  Google Scholar 

  48. B. Dieny, V. S. Speriosu, S. Metin, S. S. P. Parkin, B. A. Gurney, B. Baumgart, D. R. Wilhoit, “Magnetotransport Properties of Magnetically Soft Spin-Valve Structures,” J. Appl. Phys. 69, 4774–4779 (1991).

    Article  CAS  Google Scholar 

  49. R. Coehoorn, “Magnetoresistance and Magnetic Interactions in Exchange-Biased Spin-Valves”, in Handook of Magnetic Materials, Vol. 15, ed. by K.H. J. Buschow (Elsevier: Amsterdam, 2003), pp. 1–199.

    CAS  Google Scholar 

  50. K. Shimazawa, Y. Tsuchiya, K. Inage, Y. Sawada, K. Tanaka, T. Machita, N. Takahashi, T. Shimizu, Y. Antoku, H. Kiyono, K. Terunuma, A. Kobayashi, “Enhanced GMR Ratio of Dual Spin Valve with Monolayer Pinned Structure,” IEEE Trans. Magn 42 (2), 120–125 (2006).

    Article  Google Scholar 

  51. H. Sakakima, Y. Sugita, and M. Satomi, “Kawawake. Large MR Ratios in Spin Valves Bounded with Insulating Antiferromagnets,” J. Magn. Magn. Mater. 298, 9–11 (1999).

    Article  Google Scholar 

  52. W. F. Jr. Egelhoff, P. J. Chen, C. J. Powell, M. D. Stiles, R. D. McMichael, C.-L. Lin, J. M. Sivertsen, J. H. Judy, K. Takano, A. E. Berkowitz, T. C. Anthony, J. A. Brug, “Optimizing the Giant Magnetoresistance of Symmetric and Bottom Spin Valves,” J. Appl. Phys. 79, 5726–5728} (1996).

    Google Scholar 

  53. W. F. Egelhoff, Jr., P. J. Chen, C. J. Powell, M. D. Stiles, R. D. McMichael, C.-L. Lin, J. M. Sivertsen, J. H. Judy, K. Takano, A. E. Berkowitz, T. C. Anthony, J. A. Brug, “The Trade-Off Between Large Magnetoresistance and Small Coercivity in Symmetric Spin Valves,” J. Appl. Phys. 79, 8603–8606 (1996).

    Article  CAS  Google Scholar 

  54. H. Kanai, K. Yamada, K. Aoshima, Y. Ohtsuka, J. Kane, M. Kanamine, J. Toda, Y. Mizoshita, “Spin-Valve Read Heads with NiFe/Co90 Fe10 Layers for 5Gbit/in2 Density Recording,” IEEE Trans. Magn 32, 3368–3373 (1996).

    Article  Google Scholar 

  55. R. M. Öksüzoğlu, M. Yildirim, H. Çinar, E. Hildebrandt, L. Alff. “Effect of Ta buffer and NiFe seed layers on pulsed-DC magnetron sputtered Ir20 Mn80 /Co90 Fe10 Exchange Bias,” J. Magn. Magn. Mater. 323, 1827–1834 (2011).

    Article  CAS  Google Scholar 

  56. K. Nishioka, S. Gangopadhyay, H. Fujiwara, and M. Parker, “Hysteresis and Interaction Between the Magnetic Layers in Spin Valves,” IEEE Trans. Magn. 31, 3949–3951 (1995).

    Article  CAS  Google Scholar 

  57. J. Kanak, T. Stobiecki, V. Drewello, J. Schmalhorst, G. Reiss, “The Influence of the Texture on Properties of IrMn Spin Valve Magnetic Tunnel Junctions with MgO Barrier and CoFeB Electrodes,” Phys. Status Solidi A 204, 3942–3948 (2007).

    Article  CAS  Google Scholar 

  58. Th. G. S. M. Rijks, W. J. M. de Jonge, W. Folkerts, J. C. S. Kools, R. Coehoorn, “Magnetoresistance in Ni80 Fe20 /Ni80 Fe20 /Fe50 Mn50 Spin Valves with Low Coercivity and Ultrahigh Sensitivity,” Appl. Phys. Lett. 65, 916–920 (1994).

    Article  CAS  Google Scholar 

  59. J. C. S. Kools, “Exchange-Biased Spin-Valves for Magnetic Storage,” IEEE Trans. Magn 32, 3165–3184 (1996).

    Article  CAS  Google Scholar 

  60. M. Labrune, J. C. S. Kools, and A. Thiaville, “Spin-Valve Thermal Stability: Magnetization Rotation in Spin-Valve Multilayers,” J. Magn. Magn. Mater. 171, 1–15 (1997).

    Article  CAS  Google Scholar 

  61. K. Nishioka, T. Iseki, H. Fujiwara, and M. R. Parker, “GMR Properties of Spin Valves Using Multilayered Co90Fe10 for Free Magnetic Layer,” J. Appl. Phys. 79, 4970–4972 (1996).

    Article  CAS  Google Scholar 

  62. V. V. Ustinov, M. A. Milyaev, L. I. Naumova, V. V. Proglyado, N. S. Bannikova, T. P. Krinitsina, “High-Sensitive Hysteresisless Spin Valve with a Composite Free Layer,” Phys. Met. Metallogr. 113, 363–371 (2012).

    Article  CAS  Google Scholar 

  63. H. R. Liu, B. J. Qu, T. L. Ren, L. T. Liu, H. L. Xie, C. X. Li, W. J. Ku, “High-Sensitivity GMR with Low Coercivity in Top-IrMn Spin-Valves,” J. Magn. Magn. Mater. 267, 386–390 (2003).

    Article  CAS  Google Scholar 

  64. Z. Q. Lu and W. Y. Lai, “Giant Magnetoresistive Spin Valves with a Strong Exchange Bias Field and a Weak Interlayer Coupling Field,” J. Appl. Phys. 83, 3285–3289 (1998).

    Google Scholar 

  65. R. Jérome, T. Valet, and P. Galtier, “Correlation Between Magnetic and Structural Properties of Ni80 Fe20 Sputtered Thin Films Deposited on Cr and Ta Buffer Layers,” IEEE Trans. Magn 30, 4878–4880 (1994).

    Article  Google Scholar 

  66. B. Gehanno, P. P. Freitas, A. Veloso, J. Ferreira, B. Almeida, J. B. Sousa, A. Kling, J. C. Soares, M. F. Silva, “Ion Beam Deposition of Mn–Ir Spin Valves,” IEEE Trans. Magn 35, 4361–4367 (1999).

    Article  CAS  Google Scholar 

  67. M. A. Milyaev, L. I. Naumova, V. V. Proglyado, T. P. Krinitsina, N. S. Bannikova, A. M. Burkhanov, V. V. Ustinov, “Degree of Perfection of the 〈111〉 Texture and the Hysteresis of Magnetoresistance in MnIr-Based Top Spin Valves,” Phys. Met. Metallogr. 114, 383–389 (2013).

    Article  Google Scholar 

  68. V. V. Ustinov, M. A. Milyaev, and L. I. Naumova, “Interlayer Coupling and Magnetic Anisotropy as Key Factors for Creation of Hysteresis-Less Spin Valves,” SPIN 4, 1440001 (2014).

    Article  CAS  Google Scholar 

  69. E. Jedryka, W. E. Bailey, M. Wójcik, S. Nadolski, S. X. Wang, “Investigation of Ion Beam Deposited Spin Valve Interface Structure by Co Nuclear Magnetic Resonance,” J. Appl. Phys. 85, 4439–4441 (1999).

    Article  CAS  Google Scholar 

  70. J. Langer, R. Mattheis, and B. Ocker, W. “Maaβ, S. Senz, D. Hesse, J. Krauβlich. “Microstructure and Magnetic Properties of Sputtered Spin Valve Systems,” J. Appl. Phys. 90, 5126–5134 (2001).

    Article  CAS  Google Scholar 

  71. C. H. Marrows, F. E. Stanley, and B. J. Hickey, “Angular Dependence of Characteristic Fields in Spin-Valves,” Sen. Actuators 81, 49–52 (2000).

    Article  CAS  Google Scholar 

  72. P. Wisniowski, T. Stobiecki, J. Kanak, G. Reiss, H. Brucki, “Influence of Buffer Layer Texture Magnetic and Electrical Properties of IrMn Spin Valve Magnetic Tunnel Junctions,” J. Appl. Phys. 100, 013906 (2006).

    Article  CAS  Google Scholar 

  73. W. Alayo, Y. T. Xing, and E. Baggio-Saitovitch, “Magnetization Studies in IrMn/Co/Ru/NiFe Spin Valves with Weak Interlayer Coupling,” J. Appl. Phys. 106, 113903 (2009).

    Article  CAS  Google Scholar 

  74. D. T. Margulies, M. E. Schabes, W. McChesney, and E. E. Fullerton, “Interlayer Coupling and Magnetic Reversal of Antiferromagnetically Coupled Media,” Appl. Phys. Lett. 80, 91–93 (2002).

    Article  CAS  Google Scholar 

  75. C. -L. Lee, J. A. Bain, S. Chu, and M. E. McHenry, “Separation of Contributions to Spin Valve Interlayer Exchange Coupling Field by Temperature Dependent Coupling Field Measurements,” J. Appl. Phys. 91 (10), 7113–7115 (2002).

    Article  CAS  Google Scholar 

  76. J. L. Leal and M. H. Kryder, “Oscillatory Interlayer Exchange Coupling in Ni81 Fe19 /Cu/Ni81 Fe19 /Fe50 Mn50 Spin Valves,” J. Appl. Phys. 79, 2801–2803 (1996).

    Article  CAS  Google Scholar 

  77. F. Stobiecki and T. Stobiecki, “Spin-Valve Thermal Stability: The Effect of Different Antiferromagnets,” Acta Phys. Polon. A 102, 95–108 (2002).

    Article  CAS  Google Scholar 

  78. V. V. Ustinov, T. P. Krinitsina, M. A. Milyaev, L. I. Naumova, V. V. Proglyado, “Low Hysteresis FeMn-Based Top Spin Valve,” JNN 12, 7558–7561 (2012).

    Article  CAS  Google Scholar 

  79. V. V. Ustinov, M. A. Milyaev, L. I. Naumova, T. P. Krinitsina, V. V. Proglyado, E. I. Patrakov, “Top Non-Collinear Spin Valves with a Composite Free Layer for Hysteresis-Free GMR Sensors,” J. Korean Phys. Soc. 63, 663–666 (2013).

    Article  CAS  Google Scholar 

  80. J. P. King, J. N. Chapman, J. C. S. Kools, and M. F. Gillies, “On the Free Layer Reversal Mechanism of FeMn-Biased Spin-Valves with Parallel Anisotropy,” J. Phys. D: Appl. Phys 32, 1087–1096 (1999).

    Article  CAS  Google Scholar 

  81. L. I. Naumova, M. A. Milyaev, N. G. Bebenin, T. A. Chernysheva, V. V. Proglyado, T. P. Krinitsina, N. S. Bannikova, V. V. Ustinov, “Anhysteretic Magnetization Reversal of Spin Valves with a Strong and Weak Interlayer Coupling,” Phys. Met. Metallogr. 115, 350–357 (2014).

    Article  Google Scholar 

  82. L. I. Naumova, M. A. Milyaev, N. G. Bebenin, T. A. Chernyshova, V. V. Proglyado, T. P. Krinitsina, N. S. Bannikova, I. Yu. Kamensky, V. V. Ustinov, “Sharp Angular Dependence of Free Layer Coercivity in Spin Valves with Ferromagnetic Interlayer Coupling,” Solid State Phenom. 215, 474–479 (2014).

    Article  CAS  Google Scholar 

  83. N. G. Bebenin and V. V. Ustinov, “Magnetization and Magnetoresistance of a Spin Valve,” Phys. Met. Metallogr. 116, 170–174 (2015).

    Article  Google Scholar 

  84. L. I. Naumova, M. A. Milyaev, T. A. Chernyshova, V. V. Proglyado, I. Yu. Kamenskii, V. V. Ustinov, “Hysteresis-Free Spin Valves with a Noncollinear Configuration of Magnetic Anisotropy,” Phys. Solid State 56, 1125–1130 (2014).

    Article  CAS  Google Scholar 

  85. M. A. Milyaev, L. I. Naumova, N. S. Bannikova, V. V. Proglyado, I. K. Maksimova, I. Y. Kamensky, V. V. Ustinov, “Uniaxial Anisotropy Variations and the Reduction of Free Layer Coercivity in MnIr-Based Top Spin Valves,” Applied Physics A 121, 1133–1137 (2015).

    Article  CAS  Google Scholar 

  86. M. A. Milyaev, L. I. Naumova, I. Yu. Kamenskii, and V. V. Ustinov, “Spin Valves Based on Mn75 Ir25 Antiferromagnet with Controllable Functional Parameters,” Semiconductors 49, 1698–1701 (2015).

    Article  CAS  Google Scholar 

  87. O. Redon, G. B. Albuquerque, L. M. Rodrigues, F.I. Silva, P. P. Freitas, “Annealing Effect on Spin-Valve Sensor Transfer Curves,” IEEE Trans. Magn 34, 562–567 (1998).

    Article  CAS  Google Scholar 

  88. R. Schafer, D. Chumakov, O. Haas, L. Schultz, W. Maass, K-U. Barholz, R. Mattheis, “Spin-Valve Thermal Stability: Magnetization Processes in Spin-Valve Meanders for Sensor Applications,” IEEE Trans. Magn 39, 2089–2097 (2003).

    Article  CAS  Google Scholar 

  89. Y. Sun, Z. Qian, R. Bai, and J. Zhu, “The Linewidth Dependence of GMR Properties in Patterned Spin Valve Resistors,” J. Appl. Phys. 263, 1–5 (2011).

    Google Scholar 

  90. Z. Qian, R. Bai, C. Yang, Q. Li, Y. Sun, D. Huo, L. Li, H. Zhan, Y. Li, J. Zhu, “Effective Anisotropy Field in the Free Layer of Patterned Spin-Valve Resistors,” J. Appl. Phys. 109, 104904 (2011).

    Article  CAS  Google Scholar 

  91. G. W. Anderson, Y. Huai, and M. Pakala, “Spin-Valve Thermal Stability: The Effect of Different Antiferromagnets,” J. Appl. Phys. 87, 5726–5728 (2000).

    Article  CAS  Google Scholar 

  92. T. Lin, D. Mauri, N. Staud, C. Hwang, J. K. Howard, “Improved Exchange Coupling Between Ferromagnetic Ni-Fe and Antiferromagnetic Ni–Mn–Based Films,” Appl. Phys. Lett. 65, 1183–1185 (1994).

    Article  CAS  Google Scholar 

  93. A. J. Devasahayam and M. H. Kryder, “Biasing Materials For Spin-Valve Read Heads,” IEEE Trans. Magn 35, 649–654 (1999).

    Article  CAS  Google Scholar 

  94. C. -G. Stefanita, From Bulk to Nano. The many Sides of Magnetism, Springer Series in Materials Science, 71–98 (2008).

    Google Scholar 

  95. Storage Data, Encyclopedia of Nanoscience and Nannotechnology, 1–50 (2003).

    Google Scholar 

  96. Y. Huai, J. Zhang, G. W. Anderson, P. Rana, S. Funada, C.-Y. Hung, M. Zhao, S. Tran, “Spin-Valve Heads with Synthetic Antiferromagnet CoFe/Ru/CoFe/IrMn,” J. Appl. Phys. 85, 5528–5530 (1999).

    Article  CAS  Google Scholar 

  97. K. Meguro, H. Hoshiya, K. Watanabe, Y. Hamakawa, M. Fuyama, “Spin-Valve Films Using Synthetic Ferrimagnets for Pinned Layer,” IEEE Trans. Magn 35, 2925–2927 (1999).

    Article  CAS  Google Scholar 

  98. M. Saito, N. Hasegawa, K. Tanaka, Y. Ide, F. Koike, T. Kuriyama, “PtMn Spin Valve with Synthetic Ferrimagnet Free and Pinned Layers,” J. Appl. Phys. 87, 6974–6976 (2000).

    Article  CAS  Google Scholar 

  99. K. -M. H. Lenssen, A. E. T. Kuiper, J. J. Broek, R. A. F. van der Rijt, A. van Loon, “Sensor Properties of a Robust Giant Magnetoresistance Material System at Elevated Temperatures,” J. Appl. Phys. 87, 6665–6667 (2000).

    Article  CAS  Google Scholar 

  100. M. Rickart, A. Guedes, B. Negulescu, J. Ventura, J. B. Sousa, P. Diaz, “MacKenzie M., Chapman J.N., and Freitas P.P. Exchange Coupling of Bilayers and Synthetic Antiferromagnets Pinned to MnPt,” Eur. Phys. J. B 45, 207–212 (2005).

    Article  CAS  Google Scholar 

  101. D. V. Dimitrov, J. van Ek, Y. F. Li, and J. Q. Xiao, “Nucleation Field in Synthetic Antiferromagnet Stabilized with Uniaxial or Unidirectional Anisotropy,” J. Magn. Magn. Mater. 218, 273–286 (2000).

    Article  CAS  Google Scholar 

  102. Y. F. Li, R. H. Yu, D. V. Dimitrov, and J. Q. Xiao, “Memory Effect and Temperature Behavior in Spin Valves with and without Antiferromagnetic Subsystems,” J. Appl. Phys. 80, 5692–5695 (1999).

    Article  Google Scholar 

  103. K. Y. Kim, S. H. Jang, K. H. Shin, H. J. Kim, T. Kang, “Interlayer Coupling Field in Spin Valves with CoFe/Ru/CoFe/FeMn Synthetic Antiferromagnets (Invited),” J. Appl. Phys. 89, 7612–7615 (2001).

    Article  CAS  Google Scholar 

  104. M. A. Milyaev, L. I. Naumova, V. V. Proglyado, T. A. Chernyshova, D. V. Blagodatkov, I. Yu. Kamenskii, V. V. Ustinov, Thermal Stability of Spin Valves Based on a Synthetic Antiferromagnet and Fe50 Mn50 Alloy, Phys. Met. Mtallogr. 116, 1073–1079 (2015).

    Article  Google Scholar 

  105. J. Son, Soogil. Lee, Sangho. Lee, S. Kim, J. Hong, “Dependence of Exchange Coupling Direction on Cooling-Field Strength,” J. Appl. Phys. 110, 053908 (2011).

    Google Scholar 

  106. C. H. Marrows, F. E. Stanley, and B. J. Hickey, “Canted Exchange Bias in Antiparallel Biased Spin Valves,” J. Appl. Phys. 87, 5058–5060 (2000).

    Article  CAS  Google Scholar 

  107. H. G. Cho, J. K. Kim, and S. -R. Lee, “Magnetoresistive and Pinning Direction Behaviors of Synthetic Spin Valves with Different Pinning Layer Thickness,” J. Magnetics 7 (4), 147–150 (2002).

    Article  Google Scholar 

  108. B. Negulescu, D. Lacour, M. Hehn, A. Gerken, J. Paul, C. Duret, “On the Control of Spin Flop in Synthetic Antiferromagnetic Films,” J. Appl. Phys. 109, 103911 (2011).

    Article  CAS  Google Scholar 

  109. J. Son, S. Lee, San. Lee, S. Kim, J. Hong, “Dependence of Exchange Coupling Direction on CoolingField Strength,” J. Appl. Phys. 110, 0539081 (2011).

    Google Scholar 

  110. H. C. Tong, C. Qian, L. Miloslavsky, S. Funada, X. Shi, F. Liu, S. Dey, “The Spin Flop of Synthetic Antiferromagnetic Films,” J. Appl. Phys. 87 5055–5057 (2000).

    Article  CAS  Google Scholar 

  111. R. S. Beach, J. McCord, P. Webb, and D. Mauri, “Orthogonal Pinning of Two Ferromagnetic Layers in a Synthetic Spin Valve,” Appl. Phys. Lett. 80, 4576–4578 (2002).

    Article  CAS  Google Scholar 

  112. M. Milyaev, L. Naumova, T. Chernyshova, V. Proglyado, I. Kamensky, V. Ustinov, “Spin-Flop in Synthetic Antiferromagnet and Anhysteretic Magnetic Reversal in FeMn-Based Spin Valves,” IEEE Trans. Magn 52, 2301104 (2016).

    Article  Google Scholar 

  113. L. I. Naumova, M. A. Milyaev, T. A. Chernyshova, V. V. Proglyado, N. S. Bannikova, T. P. Krinitsina, V. V. Ustinov, “Anhysteretic Spin Valves with Synthetic Antiferromagnet and Guided Magnetoresistive Sensitivity,” Estestv. Tehnich. Nauki 10, 92–96 (2015).

    Google Scholar 

  114. M. A. Milyaev, L. I. Naumova, T. A. Chernyshova, V.V. Proglyado, N. A. Kulesh, E. I. Patrakov, I. Yu. Kamenskii, V. V. Ustinov, “Spin-Flop States in a Synthetic Antiferromagnet and Variations of Unidirectional Anisotropy in FeMn-Based Spin Valves,” Phys. Met. Metallogr. 117, 1181–1187 (2016).

    Article  CAS  Google Scholar 

  115. L. I. Naumova, M. A. Milyaev, T. A. Chernyshova, V. V. Proglyado, N. S. Bannikova, T. P. Krinitsina, “Forming of the Spin-Flop Phase in Spin Valves with Synthetic Antiferromagnet,” Nano Ingineering 12, 15–19 (2015).

    Google Scholar 

  116. Zh. Qian, R. Bai, Ch. Yang, Q. Li, Yuch. Sun, D. Huo, L. Li, H. Zhan, J. Zhu, “Effective Anisotropy Field in the Free Layer of Patterned Spin-Valve Resistors,” J. Appl. Phys. 109, 103904 (2011).

    Article  CAS  Google Scholar 

  117. P. Coelho, D. C. Leitao, J. Antunes, S. Cardaso, P. P. Freitas, “Spin Valve Devices with Synthetic-Ferrimagnet Free-Layer Displaying Enhanced Sensitivity for Nanometric Sensors,” IEEE Trans. Magn 50, 4401604 (2014).

    Google Scholar 

  118. D. C. Leitao, P. Coelho, J. Borme, S. Knudde, S. Cardaso, P. P. Freitas, “Ultra-Compact 100 × 100 μ2 Footprint Hybrid Device with Spin-Valve Nanosensors,” Sensors 15, 30311 (2015).

    Article  Google Scholar 

  119. T. A. Chernyshova, M. A. Milyaev, L. I. Naumova, V. V. Proglyado, N. S. Bannikova, I. K. Maksimova, I. Petrov, V. V. Ustinov, “Magnetoresistivite Sensitivity and Uniaxial Anisotropy of Microstripes of Spin Valve with Synthetic Antiferromagnet,” Phys. Met. Metallogr. 118, 350–357 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Milyaev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ustinov, V.V., Milyaev, M.A. & Naumova, L.I. Giant Magnetoresistance of Metallic Exchange-Coupled Multilayers and Spin Valves. Phys. Metals Metallogr. 118, 1300–1359 (2017). https://doi.org/10.1134/S0031918X17130038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X17130038

Keywords

Navigation