Skip to main content
Log in

Structure and phase transformations in copper-alloyed rapidly melt-quenched Ni50Ti32Hf18-based alloys with high-temperature shape memory effect

  • Structure, Phase Transformations, and Diffusion
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Methods of transmission and scanning electron microscopy, chemical microanalysis, electron diffraction, and X-ray diffraction have been used to carry out the comparative study of the structure and chemical and phase composition of thin ribbons of four quasi-binary alloys (Ni50Ti32Hf18, Ni45Ti32Hf18Cu5, Ni35Ti32Hf18Cu15, and Ni25Ti32Hf18Cu25) obtained in the amorphous state by rapid quenching from the melt by jet spinning. The critical temperatures of the devitrification and B2 ↔ B19′ martensitic transformation of the alloys have been determined based on the data of temperature dependences of the electrical resistivity. The specific features of the formation of the ultrafine-grained structure upon the devitrification and of the phase transformations have been studied depending on the heat-treatment regimes and chemical composition of the alloys (concentration of copper atoms).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Likhachev, S. L. Kuz’min, and Z. P. Kamentseva, Shape Memory Effect (Leningrad. Gos. Univ., Leningrad, 1987) [in Russian].

    Google Scholar 

  2. K. Ootsuka, K. Simidzu, Yu. Sudzuki, Yu. Sekiguti, Ts. Tadaki, T. Homma, and S. Miyadzaki, Shape Memory Alloys, Ed. by H. Funakubo (Kyoto, 1984; Metallurgiya, Moscow, 1990).

  3. V. N. Khachin, V. G. Pushin, and V. V. Kondratiev, Titanium Nickelide: Structure and Properties (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  4. V. G. Pushin, “Alloys with a thermomechanical memory: Structure, properties, and application,” Phys. Met. Metallogr. 90, Suppl. 1, S68–S95 (2000).

    Google Scholar 

  5. V. Brailovski, I. Yu. Khmelevskaya, S. D. Prokoshkin, V. G. Pushin, E. P. Ryklina, and R. Z. Valiev, “Foundations of heat and thermomechanical treatments and their effect on the structure and properties of titanium nickelide-based alloys,” Phys. Met. Metallogr. 97, Suppl 1, S3–S55 (2004).

    Google Scholar 

  6. K. Ootsuka and X. Ren, “Physical metallurgy of TiNibased shape memory alloys,” Prog. Mater. Sci. 50, 511–678 (2005).

    Article  Google Scholar 

  7. V. A. Lobodyuk, Yu. N. Koval’, and V. G. Pushin, “Crystal-structural features of pretransition phenomena and thermoelastic martensitic transformations in alloys of nonferrous metals,” Phys. Met. Metallogr. 111, 165–189 (2011).

    Article  Google Scholar 

  8. N. M. Matveeva, Yu. K. Kovneristiy, L.A. Matlakhova, Z. G. Fridman, and M. A. Lobzov, “Mechanical properties and structure of rapidly-quenched TiNi–TiCu alloys,” Izv. Akad. Nauk SSSR, Met. no. 4, 97–100 (1987).

    Google Scholar 

  9. E. Cesari, J. van Humbeek, V. Kolomytsev, V. A. Lobodyuk, and N. M. Matveeva, “Parameters of martensite transformation and structural state in rapidly quenched Ti35Ni15Cu shape memory alloys,” J. Phys. IV. C5: 4th European Symp. Martens. Transform. 7, 197–201 (1997).

    Google Scholar 

  10. V. G. Pushin, S. B. Volkova, and N. M. Matveeva, “Structural and phase transformations in quasi-binary TiNi–TiCu alloys rapidly quenched from the melt: I. Highcopper amorphous alloys,” Phys. Met. Metallogr. 83, 275–282 (1997).

    Google Scholar 

  11. V. G. Pushin, S. B. Volkova, and N. M. Matveeva, “Structural and phase transformations in quasi-binary TiNi–TiCu alloys rapidly quenched from the melt: II. Alloys with mixed amorphous-crystalline structure,” Phys. Met. Metallogr. 83, 283–288 (1997).

    Google Scholar 

  12. V. G. Pushin, S. B. Volkova, and N. M. Matveeva, “Structural and phase transformations in quasi-binary TiNi–TiCu alloys rapidly quenched from the melt: III. Mechanisms of crystallization,” Phys. Met. Metallogr. 83, 435–443 (1997).

    Google Scholar 

  13. V. G. Pushin, S. B. Volkova, N. M. Matveeva, L. I. Yurchenko, and A. S. Chistyakov, “Structural and phase transformations in quasi-binary TiNi–TiCu alloys rapidly quenched from the melt: IV. The Microstructure of Crystalline Alloys,” Phys. Met. Metallogr. 83, 673–678 (1997).

    Google Scholar 

  14. V. G. Pushin, S. B. Volkova, N. M. Matveeva, L. I. Yurchenko, and A. S. Chistyakov, “Structural and phase transformations in quasi-binary TiNi–TiCu alloys rapidly-hardened from melt: V. Effect of Heat Treatment,” Phys. Met. Metallogr. 83, 679–683 (1997).

    Google Scholar 

  15. V. G. Pushin, S. B. Volkova, and N. M. Matveeva, “Structural and phase transformations in quasi-binary TiNi–TiCu alloys rapidly-quenched from melt: VI.Martensitic Transformations,” Phys. Met. Metallogr. 84, 441–448 (1997).

    Google Scholar 

  16. A. V. Pushin, V. G. Pushin, and A. A. Popov, “Effect of the deviation of the chemical composition from the stoichiometric composition on the structural and phase transformations and properties of rapidly quenched Ti50 + xNi25–xCu25 alloys,” Phys. Met. Metallogr. 113, 283–294 (2012).

    Article  Google Scholar 

  17. A. V. Pushin, N. I. Kourov, A. A. Popov, and V. G. Pushin, “Structure, phase transformations and properties of Ti2NiCu rapidly quenched alloys,” Materialovedenie, no. 10, 24–32 (2012).

    Google Scholar 

  18. A. V. Pushin, A. A. Popov, and V. G. Pushin, “Effect of deviations of composition from the quasi-binary section TiNi–TiCu on structural and phase transformations in rapidly quenched alloys,” Phys. Met. Metallogr. 114, 692–702 (2013).

    Article  Google Scholar 

  19. V. G. Pushin, N. N. Kuranova, V. V. Makarov, A. V. Pushin, A. V. Korolev, and N. I. Kourov, “Structural and phase transformations in quasi-binary TiNi–TiCu alloys with thermomechanical shape-memory effects,” Phys. Met. Metallogr. 116, 1221–1233 (2015).

    Article  Google Scholar 

  20. S. H. Chang, S. K. Wu, and H. Kamura, “Crystallization kinetics of Ti50Ni25Cu25 meltspun amorphous ribbons,” Mater. Trans. 47, 2489–2492 (2006).

    Article  Google Scholar 

  21. N. N. Kuranova, A. V. Pushin, V. G. Pushin, A. V. Korolev, and N. I. Kourov, “Structural and phase transformations and properties of TiNi–TiCu quasibinary alloys,” Tech. Phys. Lett. 42, 376–379 (2016).

    Article  Google Scholar 

  22. V. G. Pushin, N. N. Kuranova, A. V. Pushin, A. V. Korolev, and N. I. Kourov, “Effect of copper on the structure–phase transformations and the properties of quasi-binary TiNi–TiCu alloys,” Tech. Phys. 61, 554–562 (2016)

    Article  Google Scholar 

  23. D. R. Angst, P. E. Thoma, and M. I. Kao, “The effect of hafnium content on the transformation temperatures of Ni49Ti51 -xHfx shape memory alloys,” J. Phys. IV, C8, Int. Conf. on Martensitic Transformations—ICOMAT 95 5, 747–752 (1995).

    Google Scholar 

  24. S. Besseghini, E. Villa, and A. Tuissi, “Ni–Ti–Hf shape memory alloys: Effect of aging and thermal cycling,” Mater. Sci. Eng., A 273–275, 390–394 (1999).

    Article  Google Scholar 

  25. X. L. Meng, Y. F. Zheng, Z. Wang, and L. C. Zhao, “Effect of aging on the phase transformation and mechanical behavior of Ti36Ni49Hf15 high temperature memory alloys,” Scr. Mater. 42, 341–348 (2000).

    Article  Google Scholar 

  26. X. L. Meng, W. Cai, F. Chen, and L. C. Zhao, “Effect of aging on martensitic transformation and microstructure in Ni–rich TiNiHf shape memory alloys,” Scr. Mater. 54, 1599–1604 (2006).

    Article  Google Scholar 

  27. V. G. Pushin, N. N. Kuranova, A. V. Pushin, A. N. Uksusnikov, and N. I. Kourov, “Structure and thermoelastic martensitic transformations in ternary Ni–Ti–Hf alloys with a high-temperatrure shapememory effect,” Tech. Phys. 61, 1009–1014 (2016).

    Article  Google Scholar 

  28. F. Dalle, A. Pasko, P. Vermaut, V. Kolomytsev, P. Ochin, and R. Portier, “Melt spun ribbons of Ti–Hf–Ni–Re shape memory alloys: First investigations,” Scr. Mater. 43, 331–335 (2000).

    Article  Google Scholar 

  29. M. Liu, X. M. Zhang, L. Liu, Y. Y. Li, and A. V. Shelyakov, “In situ TEM observations of martensite—austenite transformations in Ni49Ti36Hf15 high temperature shape memory alloy,” J. Mater. Sci. Lett. 19, 1383–1386 (2000).

    Article  Google Scholar 

  30. N. Resnina, S. Belyaev, and A. Shelyakov, “Martensitic transformation in amorphous-crystalline Ti–Ni–Cu and Ti–Hf–Ni–Cu thin ribbons,” Eur. Phys. J. Special Topics 158, 21–26 (2016).

    Article  Google Scholar 

  31. M. B. Babanly, “The parameters of martensitic transformations in Ti32Hf18Ni50–xCux alloys,” Fizika 13, 68–75 (2007).

    Google Scholar 

  32. T. E. Kuntsevich, A. V. Pushin, V. G. Pushin, “Microstructure and properties of melt-quenched TiNi-based alloys,” Tech. Phys. Lett. 40, 449–451 (2014).

    Article  Google Scholar 

  33. V. G. Pushin, A. V. Pushin, N. N. Kuranova, T. E. Kuntsevich, A. N. Uksusnikov, and N. I. Kourov, “Structural and phase transformations, mechanical properties, and shape-memory effects in quasibinary Ni50Ti38Hf12 alloy obtained by quenching from the melt,” Phys. Met. Metallogr. 117, 1251–1260 (2016).

    Article  Google Scholar 

  34. V. G. Pushin, A. V. Pushin, N. N. Kuranova, T. E. Kuntsevich, A. N. Uksusnikov, V. P. Dyakina, and N. I. Kourov, “Thermoelastic martensitic transformations, mechanical properties, and shape-memory effects in rapidly quenched Ni45Ti38Hf12 Cu5 alloy in the ultrafine-grained state,” Phys. Met. Metallogr. 117, 1261–1269 (2016).

    Article  Google Scholar 

  35. E. Yu. Panchenko, Yu. I. Chumlyakov, N. Yu. Surikov, H. J. Maier, G. Gerstein, and H. Sehitoglu, “Superelasticity in high-strength heterophase single crystals of Ni51.0Ti36.5Hf12.5 alloy,” Tech. Phys. Lett. 41, 797–800 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Pushin.

Additional information

Original Russian Text © A.V. Pushin, V.G. Pushin, N.N. Kuranova, N.I. Kourov, T.E. Kuntsevich, V.V. Makarov, A.N. Uksusnikov, 2017, published in Fizika Metallov i Metallovedenie, 2017, Vol. 118, No. 10, pp. 1046–1054.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pushin, A.V., Pushin, V.G., Kuranova, N.N. et al. Structure and phase transformations in copper-alloyed rapidly melt-quenched Ni50Ti32Hf18-based alloys with high-temperature shape memory effect. Phys. Metals Metallogr. 118, 997–1005 (2017). https://doi.org/10.1134/S0031918X17100118

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X17100118

Keywords

Navigation