Skip to main content
Log in

Calculations of the influence of alloying elements (Al, Cr, Mn, Ni, Si) on the Solubility of carbonitrides in low-carbon low-alloy steels

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Based on the CALPHAD method, a thermodynamic description of the Fe–M–V–NB–Ti–C–N system (where M is Al, Cr, Mn, Ni, or Si) has been constructed and, using this description, the solubilities of carbonitrides in austenite for low-alloy low-carbon steels with V, Nb, and Ti have been calculated using 10G2FB steel as an example. The influence of the alloy composition and temperature on the composition and amount of carbonitride phases and on the concentration of these elements in the solid solution has been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Popov and I. I. Gorbachev, “Analysis of solubility of carbides, nitrides, and carbonitrides in steels using methods of computer thermodynamics: I. Description of thermodynamic properties. Computation procedure,” Phys. Met. Metallogr. 98, 344–354 (2004).

    Google Scholar 

  2. Certificate of State Registration of Computer Program 2011618874 (IMP Equilibrium, November 15, 2011).

  3. V. V. Popov and I. I. Gorbachev, “Analysis of solubility of carbides, nitrides, and carbonitrides in steels using methods of computer thermodynamics: II. Solubility of carbides, nitrides, and carbonitrides in the Fe–V–C, Fe–V–N, and Fe–V–C–N systems,” Phys. Met. Metallogr. 99, 286–299 (2005).

    Google Scholar 

  4. I. I. Gorbachev and V. V. Popov, “Analysis of solubility of carbides, nitrides, and carbonitrides in steels using methods of computer thermodynamics: III. Solubility of carbides, nitrides, and carbonitrides in the Fe–Ti–C, Fe–Ti–N, and Fe–Ti–C–N systems,” Phys. Met. Metallogr. 108, 484–495 (2009).

    Article  Google Scholar 

  5. I. I. Gorbachev and V. V. Popov, “Analysis of solubility of carbides, nitrides, and carbonitrides in steels using methods of computer thermodynamics: IV. Solubility of carbides, nitrides, and carbonitrides in the Fe–Nb–C, Fe–Nb–N, and Fe–Nb–C–N systems,” Phys. Met. Metallogr. 110, 52–61 (2010).

    Article  Google Scholar 

  6. I. I. Gorbachev and V. V. Popov, “Thermodynamic simulation of the Fe–V–Nb–C–N system using the CALPHAD method,” Phys. Met. Metallogr. 111, 495–502 (2011).

    Article  Google Scholar 

  7. I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Thermodynamic simulation of the formation of carbonitrides in steels with Nb and Ti,” Phys. Met. Metallogr. 113, 687–695 (2012).

    Article  Google Scholar 

  8. I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Thermodynamic simulation of the formation of carbonitrides in steels with V and Ti,” Phys. Met. Metallogr. 113, 974–981 (2012).

    Article  Google Scholar 

  9. I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Thermodynamic calculations of carbonitride formation in low–alloy low–carbon steels containing V, Nb, and Ti,” Phys. Met. Metallogr. 115, 69–76 (2014).

    Article  Google Scholar 

  10. I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Simulation of precipitate ensemble evolution in steels with V and Nb,” Phys. Met. Metallogr. 116, 356–366 (2015).

    Article  Google Scholar 

  11. I. I. Gorbachev, A. Yu. Pasynkov, and V. V. Popov, “Prediction of the austenite-grain size of microalloyed steels based on the simulation of the evolution of carbonitride precipitates,” Phys. Met. Metallogr. 116, 1127–1192 (2015).

    Article  Google Scholar 

  12. H. L. Lukas, S. G. Fries, and B. Sundman, Computational Thermodynamics: The CALPHAD Method (Cambridge Univ., Cambridge, 2007).

    Book  Google Scholar 

  13. M. Hillert and L.-I. Staffonsson, “The regular solution model for stoichiometric phases and ionic melts,” Acta Chem. Scand. 24, 3618–3626 (1970).

    Article  Google Scholar 

  14. B. Sundman and J. Agren, “A regular solution model for phase with several components and sublattices, suitable for computer applications,” J. Phys. Chem. Solids 42, 297–301 (1981).

    Article  Google Scholar 

  15. M. Hillert and M. Jarl, “Model for alloying effects in ferromagnetic metals,” CALPHAD 2, 227–238 (1978).

    Article  Google Scholar 

  16. G. Inden, “Determination of chemical and magnetic interexchange energies in bcc alloys. III. Application to ferromagnetic alloys,” Z. Metallkd. 68, 529–534 (1977).

    Google Scholar 

  17. H. Ohtani, M. Yamano, and M. Hasebe, “Thermodynamic analysis of the Fe–Al–C ternary system by incorporating ab initio energetic calculations into the CALPHAD approach,” Iron Steel Inst. Jpn. Int. 44, 1738–1747 (2004).

    Article  Google Scholar 

  18. D. Connetable, J. Lacazea, P. Maugisb, and B. Sundman, “A CALPHAD assessment of Al–C–Fe system with the κ carbide modelled as an ordered form of the fcc phase,” CALPHAD 32, 361–370 (2008).

    Article  Google Scholar 

  19. B. Sundman, I. Ohnuma, N. Dupin, U. R. Kattner, and S. G. Fries, “An assessment of the entire Al–Fe system including D03 ordering,” Acta Mater. 57, 2896–2908 (2009).

    Article  Google Scholar 

  20. M. Hillert and S. Jonsson, “An assessment of the Al–Fe–N system,” Metallur. Trans. A 23, 3141–3149 (1992).

    Article  Google Scholar 

  21. K. Frisk, “A thermodynamic evaluation of the Cr–N, Fe–N, Mo–N and Cr–Mo–N systems,” CALPHAD 15, 79–106 (1991).

    Article  Google Scholar 

  22. L. S. Darken, R. P. Smith, and E. W. Filer, “Solubility of gaseous nitrogen in gamma iron and the effect of alloying constituents–aluminum nitride precipitation,” Trans. AIME 191, 1174–1179 (1951).

    Google Scholar 

  23. J. Krueger, H. D. Kunze, and E. Schuermann, in Gases and Carbon in Metals, Ed. by E. Fromm and E. Gebhardt, (Springer-Verlag, Berlin, 1976), pp. 578–613.

  24. V. T. Witusiewicz, B. Hallstedt, A. A. Bondar, U. Hecht, S. V. Sleptsov, and T. Ya. Velikanova, “Thermodynamic description of the Al–C–Ti system,” J. Alloys Compd. 623, 480–496 (2015).

    Article  Google Scholar 

  25. V. T. Witusiewicz, A. A. Bondar, U. Hecht, S. Rex, and T. Ya. Velikanova, “The Al–B–Nb–Ti system. III. Thermodynamic re-evaluation of the constituent binary system Al–Ti,” J. Alloys Comp. 465, 64–77 (2008).

    Article  Google Scholar 

  26. L. F. S. Dumitrescu, M. Hillert, and B. A. Sundman, “Reassessment of Ti–C–N based on a critical-review of available assessments of Ti–N and Ti–C,” Z. Metallkd. 90, 534–541 (1999).

    Google Scholar 

  27. G. Chen and B. Sundman, “Thermodynamic analysis of the Ti–Al–N system,” J. Phase Equil. 19, 146–160 (1998).

    Article  Google Scholar 

  28. J. Gao, Ch. Li, N. Wang, and Zh. Du, “Thermodynamic analysis of the Ti–Al–N system,” J. Beijing Univ. Sci. Technol. 15, 420–424 (2008).

    Article  Google Scholar 

  29. S. Jonsson, “Assessment of the Ti–N system,” Z. Metallkd. 87, 691–702 (1996).

    Google Scholar 

  30. P. J. Spencer, “The decisive role of calorimetric measurements in equilibrium phase diagram calculations,” J. Therm. Anal. 41, 1305–1318 (1994).

    Article  Google Scholar 

  31. V. T. Witusiewicz, A. A. Bondar, U. Hecht, and T. Ya. Velikanova, “The Al–B–Nb–Ti system. IV. Experimental study and thermodynamic re-evaluation of the binary Al–Nb and ternary Al–Nb–Ti systems,” J. Alloys Compd. 472, 133–161 (2009).

    Article  Google Scholar 

  32. N. Saunders, “System Al–V,” in COST-507 Project: Thermochemical Database for Light Metal Alloys (Vol. 2), Ed. by A. Ansara, T. Dinsdale, and M. H. Rand (Office for Official Publications of the European Communities, Luxembourg, 1998), pp. 95–98.

    Google Scholar 

  33. M. Hillert and C. Qiu, “A thermodynamic assessment of the Fe–Cr–Ni–C system,” Metall. Trans. A 22, 2187–2198 (1991).

    Article  Google Scholar 

  34. B.-J. Lee, “On the stability of Cr carbides,” CALPHAD 16, 124–149 (1992).

    Article  Google Scholar 

  35. J.-O. Andersson, “A thermodynamic evaluation of the Fe–Cr–C system,” Metall. Trans. A 19, 627–636 (1988).

    Article  Google Scholar 

  36. L. Kjellqvist and M. Selleby, “Adding C to the thermodynamic description of the Cr–Fe–Ni–O system,” CALPHAD 33, 393–397 (2009).

    Article  Google Scholar 

  37. J. Bratberg and K. Frisk, “An experimental and theoretical analysis of the phase equilibria in the Fe–Cr–V–C system,” Metall. Mater. Trans. A 35, 3649–3663 (2004).

    Article  Google Scholar 

  38. A. Khvan, B. Hallstedt, and C. Broeckmann, “A thermodynamic evaluation of the Fe–Cr–C system,” CALPHAD 46, 24–33 (2014).

    Article  Google Scholar 

  39. K. Frisk, “A thermodynamic evaluation of the Cr–Fe–N system,” Metall. Trans. A 21, 2477–2488 (1990).

    Article  Google Scholar 

  40. N. Saunders, “System Cr–Ti,” in COST-507 Project: Thermochemical Database for Light Metal Alloys (Version 2.1) (Vol. 2),–Ed. by A. Ansara, T. Dinsdale, and M. H. Rand (Office for Official Publications of the European Communities, Luxembourg, 1999/2003).

    Google Scholar 

  41. B.-J. Lee and D. N. Lee, “A thermodynamic evaluation of the Fe–Cr–V–C system,” J. Phase Equil. 13, 349–364 (1992).

    Article  Google Scholar 

  42. A. Khvan, B. Hallstedt, and K. Chang, “Thermodynamic assessment of Cr–Nb–C and Mn–Nb–C systems,” CALPHAD 39, 54–61 (2012).

    Article  Google Scholar 

  43. B.-J. Lee, “A thermodynamic evaluation of the Fe–Cr–Mn–C system,” CALPHAD 24, 1017–1025 (1993).

    Google Scholar 

  44. W. Huang, “Thermodynamic properties of the Fe–Mn–V–C system,” Metall. Mater. Trans. A 22, 1911–1920 (1991).

    Article  Google Scholar 

  45. A. V. Khvan and B. Hallstedt, “Thermodynamic description of the Fe–Mn–Nb–C system,” CALPHAD 39, 62–69 (2012).

    Article  Google Scholar 

  46. W. Huang, “An assessment of the Fe–Mn system,” CALPHAD 13, 243–252 (1989).

    Article  Google Scholar 

  47. D. Djurovic, B. Hallstedt, J. von Appen, and R. Dronskowski, “Thermodynamic assessment of the Mn–C system,” CALPHAD 34, 279–285 (2010).

    Article  Google Scholar 

  48. D. Djurovic, B. Hallstedt, J. von Appen, and R. Dronskowski, “Thermodynamic assessment of the Fe–Mn–C system,” CALPHAD 35, 479–491 (2011).

    Article  Google Scholar 

  49. S. Liu, B. Hallstedt, D. Music, and Y. Du, “Ab initio calculations and thermodynamic modeling for the Fe-Mn–Nb system,” CALPHAD 38, 43–58 (2012).

    Article  Google Scholar 

  50. A. V. Khvan and B. Hallstedt, “Thermodynamic assessment of Fe–Mn–Nb–N and Nb–C–N systems,” CALPHAD 40, 10–15 (2013).

    Article  Google Scholar 

  51. B.-J. Lee, “Thermodynamic assessment of the Fe-Nb–Ti–C–N system,” Metall. Mater. Trans. A 32, 2423–2439 (2001).

    Article  Google Scholar 

  52. C. Qiu and A. F. Guillermet, “Predictive approach to the entropy of manganese nitrides and calculation of the Mn–N phase diagram,” Z. Metallkd. 84, 11–22 (1993).

    Google Scholar 

  53. C. Qiu, “A thermodynamic evaluation of the Fe–Mn–N system,” Metall. Trans. A 24, 629–645 (1992).

    Article  Google Scholar 

  54. A. Gabriel, P. Gustafson, and I. Ansara, “A thermodynamic evaluation of the C–Fe–Ni system,” CALPHAD 11, 203–218 (1987).

    Article  Google Scholar 

  55. A. T. Dinsdale, “SGTE data for pure elements,” CALPHAD 15, 317–425 (1991).

    Article  Google Scholar 

  56. B.-J. Lee, “Revision of thermodynamic descriptions of the Fe–Cr and Fe–Ni liquid phases,” CALPHAD 17, 251–268 (1993).

    Article  Google Scholar 

  57. M. Mathon, D. Connetable, B. Sundman, and J. Lacaze, “CALPHAD-type assessment of the Fe–Nb–Ni ternary system,” CALPHAD 33, 136–161 (2009).

    Article  Google Scholar 

  58. K. Santhy and K. C. H. Kumar, “Thermodynamic reassessment of Nb–Ni–Ti system with order–disorder model,” J. Alloys Compd. 619, 733–747 (2015).

    Article  Google Scholar 

  59. H. Chen and Y. Du, “Refinement of the thermodynamic modeling of the Nb–Ni system,” CALPHAD 30, 308–315 (2006).

    Article  Google Scholar 

  60. K. C. H. Kumar, P. Wollants, and L. Delaey, “Thermodynamic calculation of Nb–Ti–V phase diagram,” CALPHAD 18, 71–79 (1994).

    Article  Google Scholar 

  61. N. Saunders, “System Ni–V,” in COST-507 Project: Thermochemical Database for Light Metal Alloys (Vol. 2), Ed. by A. Ansara, T. Dinsdale, and M. H. Rand (Office for Official Publications of the European Communities, Luxembourg, 1998), pp. 261–263.

    Google Scholar 

  62. J. Lacaze and B. Sundman, “An assessment of the Fe–C–Si system,” Metall. Mater. Trans. A 22, 2211–2223 (1991).

    Article  Google Scholar 

  63. J. Miettinen, “Reassessed thermodynamic solution phase data for ternary Fe–Si–C system,” CALPHAD 22, 231–256 (1998).

    Article  Google Scholar 

  64. X. Ma, Ch. Li, and W. Zhang, “The thermodynamic assessment of the Ti–Si–N system and the interfacial reaction analysis,” J. Alloys Compd. 394, 138–147 (2005).

    Article  Google Scholar 

  65. H. Liang and Y. A. Chang, “Thermodynamic modeling of the Nb–Si–Ti ternary system,” Intermetallics 7, 561–570 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Gorbachev.

Additional information

Original Russian Text © I.I. Gorbachev, V.V. Popov, A.Yu. Pasynkov, 2016, published in Fizika Metallov i Metallovedenie, 2016, Vol. 117, No. 12, pp. 1277–1287.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbachev, I.I., Popov, V.V. & Pasynkov, A.Y. Calculations of the influence of alloying elements (Al, Cr, Mn, Ni, Si) on the Solubility of carbonitrides in low-carbon low-alloy steels. Phys. Metals Metallogr. 117, 1226–1236 (2016). https://doi.org/10.1134/S0031918X16120061

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X16120061

Keywords

Navigation