Skip to main content
Log in

Separation in liquid and the formation of supersaturated solid solutions in Fe–Cu alloys upon rapid laser melting

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The structure of compacted specimens produced using the rapid laser melting of ultradispersed Fe–50 wt % Cu powders has been studied. The original powder was produced via the mechanical milling of iron and copper powders in a planetary-type ball mill. It has been found that the structure of the compacted specimens produced using rapid laser melting exhibits signs of the initial stages of separation in supercooled liquid. It has been shown using X-ray diffraction analysis as well as scanning and transmission electron microscopy that the final structure contains a supersaturated (Fe; Cu) solid solution formed from the high-speed movement of the solidification front and the nonequilibrium capture of copper by the moving front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Phase Diagrams of Binary Metallic Systems: A Handbook, in 3 vols., Ed. by N. P. Lyakishev (Mashinostroenie, Moscow, 1997) [in Russian].

  2. O. Kubashevski, Iron—Binary Phase Diagrams (Springer, Berlin, 1982; Metallurgiya, Moscow, 1985).

    Google Scholar 

  3. E. A. Goodremon, Handbuch der Sonderstahlkunde (Springer-Verlag, Berlin, 1956, 3te Auf.; Metallurgiya, Moscow, 1966).

    Google Scholar 

  4. D. A. Mirzayev, I. L. Yakovleva, N. A. Tereshchenko, and V. N. Urtsev, “Thermodynamic analysis of the decomposition of a supersaturated solid solution of the Fe–Cu System,” Bull. Russ. Acad. Sci.: Phys. 76, 23–26 (2012).

    Article  Google Scholar 

  5. S. S. Kiparisov and G. A. Libenson, Powder Metallurgy (Metallurgiya, Moscow, 1980) [in Russian].

    Google Scholar 

  6. P. Shen, J. Hu, Z. Guo, and Q. Guan, “A study on laser sintering of Fe–Cu powder compacts,” Metall. Mater. Trans. A 30, 2229–2235 (1999).

    Article  Google Scholar 

  7. J. H. Liu, Y. S. Shi, K. H. Chen, and S. H. Huang, “Research on manufacturing Cu matrix Fe–Cu–Ni–C alloy composite parts by indirect selective laser sintering,” Int. J. Adv. Manuf. Technol. 33, 693–697 (2007).

    Article  Google Scholar 

  8. M. Baricco, E. Bosco, G. Acconciaioco, P. Rizzi, and M. Coisson, “Rapid solidification of Cu–Fe–Ni alloys,” Mater. Sci. Eng., A 375–377, 1019–1023 (2004).

    Article  Google Scholar 

  9. E. V. Kharanzhevskii, A. G. Ipatov, I. N. Klimova, and S. M. Strelkov, “Laser sintering of ultradispersed ironbase powder materials,” Phys. Met. Metallogr. 108, 504–509 (2009).

    Article  Google Scholar 

  10. E. V. Kharanzhevskiy and M. D. Krivilev, “Laser sintering of Fe–Ni nanocomposites,” Phys. Met. Metallogr. 111, 53–61 (2011).

    Article  Google Scholar 

  11. D. Herlach, P. Galenko, and D. Holland-Moritz, Metastable Solids from Undercooled Melts (Elsevier, Amsterdam, 2007; RKhD, Moscow, 2010).

    Google Scholar 

  12. E. V. Kharanzhevskiy and A. G. Ipatov, “Structure and topography of near-surface layers, obtained by laser high-speed sintering of Fe–C–Ni and Fe–C–Cu powders,” Vestn. Udmurt. Univ., Ser. Fiz., No. 1, 76–85 (2010).

    Google Scholar 

  13. Final Report on the RFFI Project no. 09-02-2110 ofi-m “Development of Technology of Laser High-Intense Sintering of Iron Nanopowders in a Nickel Shell for the Production of Nanostructured Surface Layers of Iron–Nickel Systems” (Udmurt. Gos. Univ., Izhevsk, 2010).

  14. S. M. Reshetnikov, E. V. Kharanzhevskiy, and M. D. Krivilev, “Corrosion-electrochemical behavior of composite layers obtained by laser sintering of nanosized iron–nickel powders,” Korroziya: Materialy, Zashchita, No. 5, 18–24 (2011).

    Google Scholar 

  15. E. V. Kharanzhevskiy and S. M. Reshetnikov, “Effect of nickel distribution on the electrochemical properties of synthesized layers from Fe–Ni nanocomposite,” Yader. Fiz. Inzhin. 2, 235–239 (2011).

    Google Scholar 

  16. E. P. Elsukov, A. L. Ul’yanov, A. V. Protasov, and D. A. Kolodkin, “Solid-state reactions upon mechanical alloying of an Fe32Al68 binary mixture,” Phys. Met. Metallogr. 113, 602–611 (2012).

    Article  Google Scholar 

  17. M. D. Krivilev, E. V. Kharanzhevskiy, V. G. Lebedev, D. A. Danilov, E. V. Danilova, and P. K. Galenko, “Synthesis of composite coatings using rapid laser sintering of metallic powder mixtures,” Phys. Met. Metallogr. 114, 799–820 (2013).

    Article  Google Scholar 

  18. I. Yamauchi, N. Ueno, M. Shimaoka, and I. Ohnaka, “Undercooling in Co–Cu alloys and its effect on solidification structure,” J. Mater. Sci. 33, 371–378 (1998).

    Article  Google Scholar 

  19. Y. Nakagawa, “Liquid immiscibility in copper–iron and copper–cobalt systems in the supercooled state,” Acta Metall. 6, 704–711 (1958).

    Article  Google Scholar 

  20. D. G. Aarts, J. H. Wiel, and H. N. Lekkerkerker, “Interfacial dynamics and the static profile near a single wall in a model colloid–polymer mixture,” J. Phys.: Cond. Matt. 15, S245–S250 (2003).

    Google Scholar 

  21. D. Beysens, “Critical phenomena,” in Material Sciences in Space. A Contribution to the Scientific Basis of Space Processing (Springer-Verlag, Berlin, 1986), pp. 191–224.

    Google Scholar 

  22. S. Bastea and J. L. Lebovitz, “Domain growth in computer simulations of segregating two-dimensional binary fluids,” Phys. Rev. E: Stat., Nonlin. Soft Matter Phys. 52, 3821–3826 (1995).

    Article  Google Scholar 

  23. J. W. Cahn and J. E. Hillard, “Free energy of a nonuniform system. I. Interfacial free energy,” J. Chem. Phys. 28, 258–267 (1958).

    Article  Google Scholar 

  24. D. Jou, J. Casas-Vazquez, and M. Criado-Sancho, Thermodynamics of Fluids under Flow (Springer-Verlag, Berlin, 2001).

    Book  Google Scholar 

  25. G. I. Sil’man, “About retrograde solidus and stratification of melt in the Fe–Cu and Fe–Cu–C systems,” Metal Sci. Heat Treat. 51, 19–24 (2009).

    Article  Google Scholar 

  26. L. Zwell, D. E. Carnahan, and G. R. Speich, “Lattice parameter of ferritic and martensitic Fe–Ni alloys,” Metall. Trans. A 1, 1007–1009 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Kharanzhevskiy.

Additional information

Original Russian Text © E.V. Kharanzhevskiy, 2016, published in Fizika Metallov i Metallovedenie, 2016, Vol. 117, No. 9, pp. 920–926.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharanzhevskiy, E.V. Separation in liquid and the formation of supersaturated solid solutions in Fe–Cu alloys upon rapid laser melting. Phys. Metals Metallogr. 117, 889–895 (2016). https://doi.org/10.1134/S0031918X16070097

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X16070097

Keywords

Navigation