Skip to main content
Log in

Microstructural changes in steel 10Kh9V2MFBR during creep for 40000 hours at 600°C

  • Strength and Plasticity
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

In this work, we have investigated microstructural changes in steel 10Kh9V2MFBR (analog of P02 steel) after long-term creep tests at a temperature of 600°C under an initial stress of 137 MPa. Time to rupture was found to be more than 40000 h. It has been established that, in the zone of grips and in the neck region of the sample, the size of the particles of the M 23C6 carbides increases from 85 nm to 152 nm and 182 nm, respectively. In addition, large particles of the Laves phase with an average size of 295 nm are separated. The particles of these phases are located along high-angle boundaries. During prolonged aging and creep, the transformation of the M(C,N) particles enriched in V into the Z phase occurs. The average size of particles of the Z phase after prolonged ageing was 48 nm; after creep, it reached 97 nm. The size of M(C,N) particles enriched by Nb increases from 26 nm after tempering to 55 nm after prolonged aging and creep. It has been established that, in spite of an increase in the transverse size of the laths of tempered martensite from 0.4 to 0.9 µm in the neck of the sample, the misorientation of the lath boundaries does not increase. No recrystallization processes were found to develop in the steel during creep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Creep Resistant Steels, Ed. by F. Abe, T.-U. Kern, and R. Viswanathan (CRC Press, Woodhead Publ., Cambridge, UK, 2008).

  2. J. C. Vaillant, H. B. Vandenberghe, and H. Heuser, “T/P23, 24,911and 92: New grades for advanced coalfired power plants—Properties and experience,” Int. J. Press. Vessel Pip. 85, 38–46 (2008).

    Article  Google Scholar 

  3. K. A. Lanskaya, High-Chromium Refractory Steels (Metallurgiya, Moscow, 1976) [in Russian].

    Google Scholar 

  4. R. O. Kaibyshev, V. N. Skorobogatykh, and I. A. Shchenkova, “New martensitic steels for thermal power plant: Creep resistance,” Phys. Met. Metallogr. 109, 186–200 (2010).

    Article  Google Scholar 

  5. V. A. Dudko, A. N. Belyakov, V. N. Skorobogatykh, R. O. Kaibyshev, and I. A. Shchenkova, “Structural changes in refractory steel 10Kh9V2MFBR due to creep at 650°C,” Metal Sci. Heat Treat. 52, 111–117 (2010).

    Article  Google Scholar 

  6. V. Dudko, A. Belyakov, D. Molodov, and R. Kaibyshev, “Microstructure Evolution and Pinning of Boundaries by Precipitates in a9Pct. Cr Heat Resistant Steel During Creep,” Metall. Mater. Trans. A 44, 162–172 (2013).

    Article  Google Scholar 

  7. A. Yu. Kipelova, A. N. Belyakov, V. N. Skorobogatykh, I. A. Shchenkova, R. O. Kaibyshev, “Structural changes in steel 10Kh9K3V1M1FBR due to creep,” Metal Sci. Heat Treat. 52, 118–127 (2010).

    Article  Google Scholar 

  8. A. Kipelova, R. Kaibyshev, A. Belyakov, and D. Molodov, “Microstructure evolution in a 3% Co modified P911 heat resistant steel under tempering and creep condition,” Mater. Sci. Eng., A 528, 1280–1286 (2011).

    Article  Google Scholar 

  9. N. Dudova, A. Plotnikova, D. Molodov, A. Belyakov, and R. Kaibyshev, “Structural changes of tempered martensitic 9% Cr–2% W–3% Co steel during creep at 650°C,” Mater. Sci. Eng., A 534, 632–639 (2012).

    Article  Google Scholar 

  10. K. Kimura, H. Kushima, and K. Sawada, “Long-term creep deformation property of modified 9Cr–1Mo steel,” Mater. Sci. Eng., A 510–511, 58–63 (2009).

    Article  Google Scholar 

  11. J. Hald, “Microstructure and long–term creep properties of 9–12% Cr steels,” Int. J. Press. Vess. Pip. 85, 30–37 (2008).

    Article  Google Scholar 

  12. A. Kostka, K.-G. Tak, R. J. Hellmig, Y. Estrin, and G. Eggeler, “On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steels,” Acta Mater. 55, 539–550(2007).

    Article  Google Scholar 

  13. A. Kipelova, A. Belyakov, and R. Kaibyshev, “Laves phase evolution in a modified P911 heat resistant steel during creep at923K,” Mater. Sci. Eng., A 532, 71–77 (2012).

    Article  Google Scholar 

  14. K. Sawada, K. Kubo, and F. Abe, “Creep behavior and stability of MX precipitates at high temperature in 9Cr–0.5Mo–1.8W–VNb Steel,” Mater. Sci. Eng., A 319–321, 784–787 (2001).

    Article  Google Scholar 

  15. R. O. Kaibyshev, V. N. Skorobogatykh, and I. A. Shchenkova, “Formation of the z phase and prospects of martensitic steels with 11% Cr for operation above 590°C,” Metal Sci. Heat Treat. 52, 90–99 (2010).

    Article  Google Scholar 

  16. I. Fedorova, A. Belyakov, P. Kozlov, V. Skorobogatykh, I. Shenkova, and R. Kaibyshev, “Laves-phase precipitates in a low-carbon 9% Cr martensitic steel during aging and creep at923K,” Mater. Sci. Eng., A 615, 153–163 (2014).

    Article  Google Scholar 

  17. M. I. Isik, A. Kostka, and G. Eggeler, “On the nucleation of Laves phase particles during high-temperature exposure and creep of tempered martensite ferritic steels,” Acta Mater. 81, 230–240 (2014).

    Article  Google Scholar 

  18. V. V. Popov and I. I. Gorbachev, “Numerical simulation of carbide and nitride precipitate evolution in steels,” Mat.-Wiss. Werkstofftech. 36, 477–481 (2005).

    Article  Google Scholar 

  19. V. V. Popov, “Simulation of Precipitate Evolution in FeBased Alloys”, Advanctd structured materials, 36, 215–281 (2013).

    Article  Google Scholar 

  20. I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Thermodynamic modeling of carbonitride formation in steels with V and Ti,” Phys. Met. Metallogr. 113, 974–981 (2012).

    Article  Google Scholar 

  21. I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Simulation of evolution of precipitates of two carbonitride phases in Nband Ti-containing steels during isothermal annealing,” Phys. Met. Metallogr. 114, 741–751 (2013).

    Article  Google Scholar 

  22. A. Kipelova, M. Odnobokova, A. Belyakov, and R. Kaibyshev, “Effect of Co on creep behavior of a P911 steel,” Metall. Mater. Trans. A 44, 577–583 (2012).

    Article  Google Scholar 

  23. I. Fedorova, A. Kipelova, A. Belyakov, and R. Kaibyshev, “Microstructure evolution in an advanced9Pct Cr martensitic steel during creep at923K (650°C),” Metall. Mater. Trans. A 44, 128–135 (2013).

    Article  Google Scholar 

  24. K. Sawada, H. Kushima, and K. Kimura, “Z-phase formation during creep and aging in 9–12% Cr heat resistant steels,” ISIJ Int. 46, 769–775 (2006).

    Article  Google Scholar 

  25. A. Golpayegani, H. -O. Andren, H. Danielsen, and J. Hald, “A study on Z-phase nucleation in martensitic chromium steels,” Mater. Sci. Eng., A 489, 310–318 (2008).

    Article  Google Scholar 

  26. F.-S. Yin, L.-Q. Tian, B. Xue, X.-B. Jiang, and L. Zhou, “Effect of carbon content on microstructure and mechanical properties of9to12Pct Cr ferritic/martensitic heat-resistant steels,” Metall. Mater. Trans. A 43, 2203–2209 (2012).

    Article  Google Scholar 

  27. L. Cipolla, H. K. Danielsen, D. Venditti, E. D. Nunzio, J. Hald, and M. A. J. Somers, “Conversion of MX nitrides to Z-phase in a martensitic 12% Cr steel,” Acta Mater. 58, 669–679 (2010).

    Article  Google Scholar 

  28. C. Panait, W. Bendick, A. Fuchsmann, A.-F. Gourgues-Lorenzon, and J. Besson, “Study of the microstructure of the grade91steel after more than100000h of creep exposure at 600°C,” Int. J. Press. Vessel Pip. 87, 326–335 (2010).

    Article  Google Scholar 

  29. R. P. Chena, H. G. Armaki, K. Maruyamaa, and M. Igarashi, “Long-term microstructural degradation and creep strength in grade91steel,” Mater. Sci. Eng., A 528, 4390–4394 (2011).

    Article  Google Scholar 

  30. K. Kimura, Y. Toda, H. Kushima, and K. Sawada, “Creep strength of high chromium steel with ferrite matrix,” Int. J. Press. Vessel Pip. 87, 282–288 (2010).

    Article  Google Scholar 

  31. A. Aghajani, C. Somsen, and G. Eggeler, “On the effect of long-term creep on the microstructure of a 12% chromium tempered martensite ferritic steel,” Acta Mater. 57, 5093–5106 (2009).

    Article  Google Scholar 

  32. S. Zaefferer, “Computer-aided crystallographic analysis in the TEM,” Adv. Imag. Electron Phys. 125, 355–415 (2002).

    Article  Google Scholar 

  33. M. Yoshizawa, M. Igarashi, K. Moriguchi, A. Iseda, H. Armaki, and K. Maruyama, “Effect of precipitates on long-term creep deformation properties of P92 and P122 type advanced ferritic steels for USC power plants,” Mater. Sci. Eng., A 510–511, 162–168 (2009).

    Article  Google Scholar 

  34. A. Kipelova, A. Belyakov, and R. Kaibyshev, “The crystallography of M23C6 carbides in a martensitic 9% Cr steel after tempering, aging and creep,” Philos. Mag. 93, 2259–2268 (2013).

    Article  Google Scholar 

  35. D. A. Porter, K. E. Esterling, and M. Sherif, Phase Transformation in Metals and Alloys 3rd ed. (CRS Press, Roca Baton, Fl., 2009).

    Google Scholar 

  36. K. Suzuki, S. Kumai, Y. Toda, H. Kushima, and K. Kimura, “Two-hase separation of primary MX carbonitride during tempering in creep resistant 9Cr1MoVNb steel,” ISIJ Int. 43, 1089–1094 (2003).

    Article  Google Scholar 

  37. A. Yu. Kipelova, A. N. Belyakov, V. N. Skorobogatykh, I. A. Shchenkova, R. O. Kaibyshev, “Tempering-induced structural changes in steel 10Kh9K3V1M1FBR and their effect on the mechanical properties,” Metal Sci. Heat Treat. 52, 100–110 (2010).

    Article  Google Scholar 

  38. O. Prat, J. Garcia, D. Rojas, C. Carrasco, and G. Inden, “Investigations on the growth kinetics of Laves phase precipitates in 12% Cr creep-resistant steels: Experimental and DICTRA calculations,” Acta Mater. 58, 6142–6153 (2010).

    Article  Google Scholar 

  39. H. Cui, F. Sun, K. Chen, L. Zhang, R. Wan, A. Shan, and J. Wu, “Precipitation behavior of Laves phase in 10% Cr steel X12CrMoWVNbN10-1-1 during short–erm creep exposure,” Mater. Sci. Eng., A 527, 7505–7509(2010).

    Article  Google Scholar 

  40. Q. Li, “Precipitation of Fe2W Laves phase and modeling of its direct influence on the strength of a 12Cr–2W steel,” Metall. Mater. Trans. A 37, 89–97 (2006).

    Article  Google Scholar 

  41. K. Sawada, K. Suzuki, H. Kushima, M. Tabuchi, and K. Kimura, “Effect of tempering temperature on Z-phase formation and creep strength in 9Cr–1Mo–V–Nb–N steel,” Mater. Sci. Eng., A 480, 558–563 (2008).

    Article  Google Scholar 

  42. F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed. (Elsevier, Atlanta, GA, 2004), pp. 91–112.

    Book  Google Scholar 

  43. E. Hornbogen and U. Koster, in Recrystallization of Metallic Materials, Ed. by F. Haessner (Verlag, Stuttgart, 1978), pp. 159–194.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Dudko.

Additional information

Original Russian Text © A.E. Fedoseeva, P.A. Kozlov, V.A. Dudko, V.N. Skorobogatykh, I.A. Shchenkova, R.O. Kaibyshev, 2015, published in Fizika Metallov i Metallovedenie, 2015, Vol. 116, No. 10, pp. 1102–1111.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedoseeva, A.E., Kozlov, P.A., Dudko, V.A. et al. Microstructural changes in steel 10Kh9V2MFBR during creep for 40000 hours at 600°C. Phys. Metals Metallogr. 116, 1047–1056 (2015). https://doi.org/10.1134/S0031918X15080049

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X15080049

Keywords

Navigation