Skip to main content
Log in

Mechanism of the formation and specific features of the structure of massive samples of compound MgB2

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Using different methods, it has been revealed that two MgB2 phases with the same hexagonal lattice, which differ in the contents of Mg and B (in the limits of the homogeneity range), as well as in the concentration of impurity oxygen and in the microstructure, are formed. The regions that correspond to these two phases of MgB2 have relatively large sizes (100–500 μm) and, alternatingly, fill the entire volume of the sample. It is assumed that the two-phase state of MgB2 is due to the specific features of the mechanism of its formation (when synthesizing at 800–1000°C), which includes the stage of the melting of magnesium, the dissolution of solid boron in the melt to a concentration that corresponds to the composition of the MgB2 compound, and the subsequent crystallization of the MgB2 compound in the melt with the formation of a dendrite-like structure, which is accompanied by an appropriate redistribution of the main components and impurities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang YiBing and Zhou Shiping, “Mg2B2-MgO Compound Superconductor,” in Superconductors, Ed. by Adir Moyses Luiz, ISBN: 978-953-307-107-7, InTech (2010). Ava from http://www.intechopen.com/articles/show/title/mgB2-mgo-compound-superconductor.

    Google Scholar 

  2. V. Moshchalkov, M. Menghini, T. Nashio, Q. H. Chen, A. V. Silhanek, V. H. Dao, L. F. Chibotaru, N. D. Zhigadlo, and J. Karpinski, “Type-1.5 superconductivity,” Phys. Rev. Lett. 102, 117001 (2009).

    Article  Google Scholar 

  3. S. Rajput and S. Chudhary, “On the superconductivity in in-situ synthesized MgB2 tapes,” J. Phys. Chem. Solids 69, 1945–1950 (2008).

    Article  Google Scholar 

  4. Y. Zhu, L. Wu, V. Volkov, G. Gu, A. R. Moodenbaugh, M. Malac, M. Suenaga, and J. Tranquda, “Microstructure and structural defects in MgB2 superconductor,” Physica C 356, 239–253 (2001).

    Article  Google Scholar 

  5. A. Xu, Y. Ma, X. Zhang, X. Li, G. Nishijima, S. Awaji, and K. Watanabe, “Superconducting properties of MgB2 bulks processed in high magnetic fields,” Physica C 445–448, 881–813 (2006).

    Google Scholar 

  6. C. F. Liu, G. Yan, S. J. Du, W. Xi, Y. Feng, P. X. Zhang, X. Z. Wu, and L. Zhou, “Effect of heat-treatment temperatures on density and porosity in MgB2 superconductor,” Physica C 386, 603–606 (2003).

    Article  Google Scholar 

  7. T. A. Prikhna, W. Gawalek, Ya. M. Savchuk, N. V. Sergienko, V. E. Moshchil, M. Wendt, M. Zeisberger, T. Habisreuther, S. X. Dou, S. N. Dub, V. S. Melnikov, Ch. Schmidt, J. Dellith, and P. A. Nagorny, “Formation of magnesium diboride-based materials with high critical currents and mechanical characteristics by high-pressure synthesis,” J. Phys.: Conf. Ser 43, 496–499 (2006).

    Google Scholar 

  8. B. Birajdar and O. Eibl, “Microstructure-critical current density model for MgB2 wires and tapes,” J. Appl. Phys. 105, 033903 (2009).

    Article  Google Scholar 

  9. G. Alecu, A. Cosac, and S. Zamfir, “Superconductivity in MgB2,” Ann. Univ. Craiova, Electr. Eng. Ser. 30, 382–385 (2008).

    Google Scholar 

  10. S. R. Chauhan and S. Chaudhary, “On the residual resistivity ratio in MgB2 superconductors,” IEEE Trans. Appl. Supercond. 20, 26–32 (2010).

    Article  Google Scholar 

  11. S. S. Indrakanti, V. F. Nesterenko, M. B. Maple, N. A. Frederick, W. M. Yuhasz, and Li. Shi, “Hot isostatic pressing of bulk magnesium diboride: Mechanical and superconducting properties,” Philos. Mag. Lett. 81, 849–857 (2001).

    Article  Google Scholar 

  12. T. Prikhna, W. Gawalek, M. Eisterer, H. W. Weber, M. Monastyrov, V. Sokolovsky, J. Noudem, V. Moshchil, M. Karpets, V. Kovylaev, A. Borimskiy, V. Tkach, A. Kozyrev, R. Kuznietsov, J. Dellith, C. Shmidt, D. Litzkendorf, F. Karau, U. Dittrich, and M. Tomsic, “The effect of high-pressure synthesis on flux pinning in MgB2-based superconductors,” Physica C 479, 111–114 (2012).

    Article  Google Scholar 

  13. J. Q. Li, L. Li, Y. Q. Zhou, Z. A. Ren, G. C. Che, and Z. X. Zhao, “Structural features, stacking faults, and grain boundaries in MgB2 superconducting materials,” Chin. Phys. Lett. 18, 600–603 (2001).

    Google Scholar 

  14. A. Asthana, A. Matsumoto, H. Kitaguchi, Y. Matsui, T. Hara, K. Watanabe, H. Yamada, N. Uchiyama, and H. Kumakura, “Structural-microstructural characteristics and its correlations with the superconducting properties of in situ PIT-processed MgB2 tapes with ethyltoluene and SiC powder added,” Supercond. Sci. Technol. 21, 115013 (2008).

    Article  Google Scholar 

  15. X. Z. Liao, A. Serquis, Y. T. Zhu, J. Y. Huang, L. Civale, D. E. Peterson, F. M. Mueller, and H. F. Xu, “Mg(B,O)2 precipitation in MgB2,” J. Appl. Phys. 93, 6208–6215 (2003).

    Article  Google Scholar 

  16. I. F. Kislyak, M. A. Tikhonovskii, D. G. Malykhin, T. Yu. Rudycheva, V. G. Yarovoi, A. A. Blinkin, V. V. Derevyanko, S. Yu. Saenko, G. A. Kholomeev, A.G. Sivakov, A. S. Pokhila, and O. G. Turutanov, “Investigations of superconductivity in bulk MgB2 and Fe(steel)/MgB2 wires,” Vopr. At. Nauki Tekh., No. 6, 107–110 (2009).

    Google Scholar 

  17. A. L. Ivanovskii, I. R. Shein, and N. I. Medvedeva, “Non-stoichiometric s-, p-, and d-metal diborides: Synthesis, properties and simulation,” Russ. Chem. Rev. 77, 467–486 (2008).

    Article  Google Scholar 

  18. I. L. Deryagina, E. N. Popova, E. P. Romanov, E. A. Dergunova, A. E. Vorob’eva, and S. M. Balaev, “Evolution of the nanocrystalline structure of Nb3Sn superconducting layers upon two-stage annealing of Nb/Cu-Sn composites alloyed with titanium,” Phys. Met. Metallogr. 133, 391–405 (2012).

    Article  Google Scholar 

  19. Z.-K. Liu, D. G. Schlom, Q. Li, and X. X. Xi, “Thermodynamics of the Mg-B system: Implications for the deposition of MgB2 thin films,” Appl. Phys. Lett. 78, 3678–3680 (2001).

    Article  Google Scholar 

  20. P. E. D. Morgan, R. M. Housley, J. R. Porter, and J. J. Ratto, “Low level mobile liquid droplet mechanism allowing development of large platelets of high-Tc “Bi-2223” phase within a ceramic,” Physica C 176, 279–284 (1991).

    Article  Google Scholar 

  21. V. A. Maroni, M. Teplitsky, and M. W. Rupich, “An environmental scanning electron microscope study of the Ag/Bi-2223 composite conductor from 25 to 840°C,” Physica C 313, 169–174 (1999).

    Article  Google Scholar 

  22. C. Wagner and W. Schottky, “Theorie der geordneten Mischphasen,” Z. Phys. Chem. B 11, 163 (1930).

    Google Scholar 

  23. Yu. D. Tret’yakov, “Solid-state reactions,” Soros. Obrazov. Zh., No. 4, 35–39 (1999).

    Google Scholar 

  24. H. Schamlzried, Chemical Kinetics of Solids (VCH, Weinheim, 1995).

    Book  Google Scholar 

  25. V. I. Arkharov and V. O. Esin, “On mechanism of reaction diffusion in Cu-Se, Cu-Te, Ag-Se and Ag-Te systems,” Fiz. Met. Metalloved. 5, 246–250 (1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.I. Kuznetsova, S.V. Sudareva, T.P. Krinitsina, Yu.V. Blinova, E.P. Romanov, Yu.N. Akshentsev, M.V. Degtyarev, M.A. Tikhonovskii, I.F. Kislyak, 2014, published in Fizika Metallov i Metallovedenie, 2014, Vol. 115, No. 2, pp. 186–197.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsova, E.I., Sudareva, S.V., Krinitsina, T.P. et al. Mechanism of the formation and specific features of the structure of massive samples of compound MgB2 . Phys. Metals Metallogr. 115, 175–185 (2014). https://doi.org/10.1134/S0031918X14020136

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X14020136

Keywords

Navigation