Skip to main content
Log in

Self-blocking of dislocations in intermetallic compound Ni3Ge: Cubic slip

  • Strength and Plasticity
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Self-blocking of dislocations belonging to the cube plane has been detected in the intermetallic compound Ni3Ge. The nature of cubic slip has been clarified. The experiments included deformation at a temperature above T max (the temperature of the yield-stress peak) and subsequent heating without stress. In addition, changes in the dislocation structure upon slow cooling from the temperature of the preliminary deformation have been investigated; in doing so, self-blocking of dislocations has been revealed for the first time. Based on the totality of experimental data, a conclusion has been made on the two-valley potential relief for a dislocation motion in the cube plane. It is the difference in the depths between the Peierls valley (a diffuse core in the cube plane) and the deepest valley (a superpartial dislocation split in the octahedron plane) that provides for the driving force of self-blocking in the absence of an external stress. Different aspects of cubic slip have been considered: the disappearance of cubic slip at T < T max and, correspondingly, the nonobservation of an anomalous behavior of the yield stress, as well as the disappearance of octahedral slip at T > T max.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. A. Greenberg and M. A. Ivanov, “Some Features of the Formation and Destruction of Dislocation Barriers in Intermetallic Compounds: I. Theory,” Fiz. Met. Metalloved. 102(1), 68–76 (2006) [Phys. Met. Metallogr. 102 (1), 61–68 (2006)].

    Google Scholar 

  2. B. A. Greenberg, O. V. Antonova, M. A. Ivanov, A. M. Patselov, and A. V. Plotnikov, “Some Features of the Formation and Destruction of Dislocation Barriers in Intermetallic Compounds: II. Observation of Blocked Superdislocations upon Heating without Stress,” Fiz. Met. Metalloved. 102(1), 77–83 (2006) [Phys. Met. Metallogr. 102 (1), 69–75 (2006)].

    Google Scholar 

  3. A. M. Patselov, O. V. Antonova, B. A. Greenberg, M. A. Ivanov, and A. V. Plotnikov, “Some Features of the Formation and Destruction of Dislocation Barriers in Intermetallic Compounds: III. Thermoactivated Straightening of Dislocations along a Preferred Direction in Ni3Al,” Fiz. Met. Metalloved. 104(5), 534–540 (2007) [Phys. Met. Metallogr. 104 (5), 514–521 (2007)].

    CAS  Google Scholar 

  4. B. A. Greenberg, O. V. Antonova, A. Yu. Volkov, M. A. Ivanov, N. A. Kruglikov, and Yu. P. Kadnikova, “Some Features of the Formation and Destruction of Dislocation Barriers in Intermetallic Compounds: IV. Thermoactivated Straightening of Dislocations along a Preferred Direction in TiAl,” Fiz. Met. Metalloved. 105(5), 523–531 (2008) [Phys. Met. Metallogr. 105 (5), 491–499 (2008)].

    Google Scholar 

  5. B. A. Greenberg and M. A. Ivanov, “Some Features of the Formation and Destruction of Dislocation Barriers in Intermetallic Compounds: V. Single-Valley and Multivalley Potential Relief for Dislocations,” Fiz. Met. Metalloved. 105(6), 587–597 (2008) [Phys. Met. Metallogr. 105 (6), 553–563 (2008)].

    Google Scholar 

  6. B. A. Greenberg, M. A. Ivanov, N. A. Kruglikov, and O. V. Antonova, “On the Possibility of the Self-Blocking of Dislocations in Various Materials,” Fiz. Met. Metalloved. 108(1), 93 (2009) [Phys. Met. Metallogr. 108 (1), 88–99 (2009)].

    Google Scholar 

  7. B. A. Greenberg and M. A. Ivanov, “Blocking and Self-Blocking of Dislocations in Intermetallics,” WIT Trans. Eng. Sci. 57, 51–60 (2008).

    Google Scholar 

  8. B. A. Greenberg, M. A. Ivanov, and A. M. Patselov, “Blocking and Self-Blocking of Superdislocations in Intermetallics,” in Proc. TMS Ann. Meet. Suppl. 2008, vol. 3, p. 165–170.

  9. B. A. Greenberg, M. A. Ivanov, O. V. Antonova, et al., “Effect of Self-Blocking of Dislocations in Intermetallics,” Deform. Razrush. Mater. No. 12, 2–18 (2008).

    Google Scholar 

  10. B. A. Greenberg and M. A. Ivanov, “Is the Dislocation Blocking Possible in the Absence of an External Stress?,” Izv. Vysch. Uchebn. Zaved., Fiz., No. 9/2, 132–138 (2009).

  11. B. A. Greenberg and M. A. Ivanov, “Self-Blocking of Dislocations: A New Concept,” Kristallografiya 54(6), 1023–1033 (2009) [Crystallogr. Rep. 54 (6), 974–984 (2009)].

    Google Scholar 

  12. B. A. Greenberg, M. A. Ivanov, and A. V. Plotnikov, “Reconstruction of Dislocation Potential Relief by Means of Self-Blocking Effect,” Kristallografiya 55(6), 1085–1090 (2010) [Crystallogr. Rep. 55 (6), 1025–1030 (2010)].

    Google Scholar 

  13. V. I. Trefilov, Yu. V. Mil’man, and S. A. Firstov, Physical Principles of Strength of Refractory Metals (Naukova Dumka, Kiev, 1975) [in Russian].

    Google Scholar 

  14. P. Veyssier and G. Saada, “Microscopy and Plasticity of the L12 Phase,” in Dislocations in Solids, Ed. by M. Duesbery and F. R. N. Nabarro (Elsevier, Amsterdam, 1996), vol. 10, p. 255.

    Google Scholar 

  15. B. Viguer, J. L. Martin, and J. Bonneville, “Work Hardening in Some Ordered Intermetallic. Compounds,” in Dislocations in Solids, Ed. by F. R. N. Nabarro and M. S. Duesbery (Elsevier, (Amsterdam, 2002), Vol. 11, pp. 460–545.

  16. V. A. Starenchenko, Yu. V. Solov’eva, V. I. Nikolaev, V. V. Shpeizman, and B. I. Smirnov, “Thermal Hardening of Ni3Ge Alloy Single Crystals with an L12 Superstructure at Low Temperatures,” Fiz. Tverd. Tela 42(11), 2017–2023 (2000) [Phys. Solid State 42 (11), 2076–2082 (2000)].

    Google Scholar 

  17. V. A. Starenchenko, Yu. V. Solov’eva, S. V. Starenchenko, and T. A. Kovalevskaya, Thermal and Deformation Hardening of Alloy Single Crystals with an L1 2 Superstructure (NTL, Tomsk, 2006) [in Russian].

    Google Scholar 

  18. H-R. Pak, T. Saburi, and S. Nenno, “Temperature and Orientation Dependence of the Yield Stress in Ni3Ge Single Crystals,” Trans. JIM 18, 617–626 (1977).

    CAS  Google Scholar 

  19. K. Aoki and O. Izumi, “Orientation and Temperature Dependence of the Flow Stress in Intermetallic Compound Ni3Ge Single Crystals,” J. Mater. Sci. 13, 2313–2320 (1978).

    Article  CAS  Google Scholar 

  20. V. Vitek, “Core Structure of Screw Dislocations in Body-Centered Cubic Metals: Relation to Symmetry and Interatomic Bonding,” Philos. Mag. 84(3–5), 415–428 (2004).

    Article  CAS  Google Scholar 

  21. B. A. Greenberg and M. A. Ivanov, “A Theoretical Description of the Step Deformation of Intermetallics,” Mater. Sci. Eng., A 239, 813–818 (1997).

    Article  Google Scholar 

  22. B. A. Greenberg and M. A. Ivanov, Intermetallic Compounds Ni 3 Al and TiAl: Microstructure, Deformation Behavior (Ural. Otd. Ross. Akad. Nauk, Ekaterinburg, 2002) [in Russian].

    Google Scholar 

  23. D. M. Wee, D. P. Pope, and V. Vitek, “Plastic Flow of Pt3Al Single Crystals,” Acta Metall. 32(6), 829–836 (1984).

    Article  CAS  Google Scholar 

  24. A. E. Staton-Bevan and R. D. Rawlings, “The Deformation Behavior of Single Crystals Ni3(Al,Ti),” Phys. Status Solidi A 29, 613–622 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © B.A. Greenberg, M.A. Ivanov, O.V. Antonova, A.V. Plotnikov, N.A. Kruglikov, A.M. Vlasova, Yu.V. Solov’eva, 2011, published in Fizika Metallov i Metallovedenie, 2011, Vol. 111, No. 4, pp. 402–412.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenberg, B.A., Ivanov, M.A., Antonova, O.V. et al. Self-blocking of dislocations in intermetallic compound Ni3Ge: Cubic slip. Phys. Metals Metallogr. 111, 385–394 (2011). https://doi.org/10.1134/S0031918X11030057

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X11030057

Keywords

Navigation