Skip to main content
Log in

Structure evolution of pure iron upon low-temperature deformation under high pressure

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Structure evolution of iron (99.97% purity) deformed by shear under pressure at 80 K in a medium of liquid nitrogen has been investigated. It has been found that, along with dislocation slip, twinning and development of deformation microbands become operative mechanisms of low-temperature deformation. This led to specific type of inhomogeneity of the structure in which, up to ultimately attained degrees of deformation, low-angle misorientations are retained and, unlike room-temperature deformation, no homogeneous submicrocrystalline (SMC) structure is formed. Twinning contributes to the refinement of structure elements that are more than 1 μm in size; the further refinement occurs by the dislocation-disclination mechanism and goes to the steady-state stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Trefilov, Yu. V. Mil’man, and S. A. Firstov, Physical Fundamentals of Strength of Refractory Metals (Naukova Dumka, Kiev, 1975) [in Russian].

    Google Scholar 

  2. V. I. Vladimirov and A. E. Romanov, Disclinations in Crystals (Nauka, Leningrad, 1986) [in Russian].

    Google Scholar 

  3. O. A. Kaibyshev, N. R. Dudova, and V. A. Valitov, “Effect of Severe Plastic Deformation and Subsequent Annealing on the Structure and Properties of the Kh20N80 Alloy,” Fiz. Met. Metalloved. 96(1), 54–61 (2003) [Phys. Met. Metallogr. 96 (1), 48–54 (2003)].

    CAS  Google Scholar 

  4. N. A. Smirnova, V. I. Levit, V. P. Pilyugin, et al., “Evolution of the Structure of FCC Single Crystals at Large Plastic Deformations,” Fiz. Met. Metalloved. 61(6), 1170–1177 (1986).

    CAS  Google Scholar 

  5. T. M. Gapontseva, V. P. Pilyugin, L. M. Voronova, et al., “Evolution of the Structure and Hardness of Cobalt upon Cold and Low-Temperature Deformation under Pressure,” Deformat. Razrush. Mater. No. 8, 24–26 (2008).

    Google Scholar 

  6. V. P. Pilyugin, T. M. Gapontseva, T. I. Chashchukhina, et al., “Evolution of the Structure and Hardness of Nickel upon Cold and Low-Temperature Deformation under Pressure,” Fiz. Met. Metalloved. 105(4), 438–448 (2008) [Phys. Met. Metallogr. 105 (4), 409–418 (2008)].

    CAS  Google Scholar 

  7. M. A. Meyers, “Work Softening in Shock-Loaded Nickel,” Metall. Trans. A 8(10), 1581–1583 (1977).

    Article  Google Scholar 

  8. D. S. Kamenetskaya, I. B. Piletskaya, and V. I. Shiryaev, High-Purity Iron (Metallurgiya, Moscow, 1978) [in Russian].

    Google Scholar 

  9. L. S. Vasil’ev and I. L. Lomaev, “On Possible Mechanisms of Nanostructure Evolution upon Severe Plastic Deformation of Metals and Alloys,” Fiz. Met. Metalloved. 101(4), 417–424 (2006) [Phys. Met. Metallogr. 101 (4), 386–392 (2006)].

    Google Scholar 

  10. M. V. Degtyarev, L. M. Voronova, T. I. Chashchukhina, et al., “Formation and Evolution of Submicrocrystalline Structure in Pure Iron upon Shear under Pressure,” Fiz. Met. Metalloved. 96(6), 100–108 (2003) [Phys. Met. Metallogr. 96 (6), 642–650 (2003)].

    CAS  Google Scholar 

  11. M. V. Degtyarev, “Multistage Nature of the Structure Evolution in Iron and Structural Steels upon Shear under Pressure,” Fiz. Met. Metalloved. 99(6), 47–60 (2005) [Phys. Met. Metallogr. 99 (6), 595–608 (2005)].

    CAS  Google Scholar 

  12. V. P. Pilyugin, D. I. Tupitsa, V. A. Teplov, et al., “Method of Estimation of the Magnitude and Distribution of Pressure in Bridgman Anvils,” Fiz. Met. Metalloved., No. 8, 103–106 (1990).

  13. G. Amsel and D. Samuel, “Microanalysis of the Stable Isotopes of Oxygen by Means of Nuclear Reactions,” Anal. Chem. 39, 1689–1698 (1967).

    Article  CAS  Google Scholar 

  14. V. N. Volkov, V. B. Vykhodets, I. K. Golubkov, et al., “Accurate Light Ion Beam Monitoring by Backscattering,” Nucl. Instrum. Meth. 205, 73–77 (1983).

    Article  CAS  Google Scholar 

  15. V. B. Vykhodets, S. M. Klotsman, and A. D. Levin, “Diffusion of Oxygen in α-Titanium. I. Anisotropy of Oxygen Diffusion in α-Titanium,” Fiz. Met. Metalloved. 62(5), 974–980 (1987).

    Google Scholar 

  16. V. B. Vykhodets, S. M. Klotsman, and A. D. Levin, “Diffusion of Oxygen in α-Titanium. II. Computation of the Concentration Profile of Impurity by Nuclear Microanalysis,” Fiz. Met. Metalloved. 64(5), 920–924 (1987).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.P. Pilyugin, L.M. Voronova, M.V. Degtyarev, T.I. Chashchukhina, V.B. Vykhodets, T.E. Kurennykh, 2010, published in Fizika Metallov i Metallovedenie, 2010, Vol. 110, No. 6, pp. 590–599.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pilyugin, V.P., Voronova, L.M., Degtyarev, M.V. et al. Structure evolution of pure iron upon low-temperature deformation under high pressure. Phys. Metals Metallogr. 110, 564–573 (2010). https://doi.org/10.1134/S0031918X10120070

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X10120070

Keywords

Navigation