Skip to main content
Log in

Macrolocalization of deformation in the material with intermittent flow

  • Strength and Plasticity
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The deformation behavior of the dispersion-hardenable aluminum alloy D1 has been studied in the aged state. It has been established that during cold tensile deformation of this alloy three stages of strain hardening can be distinguished against the background of intermittent flow: linear, Taylor parabolic, and prefracture. Each stage is associated with its type of serration of intermittent flow and its type of pictures of macrolocalization of plastic flow. There is proposed a mechanism of the formation of distributions of zones of macrolocalized deformation for each stage, determined by the character of intermittent flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Fridel, Dislocations (Pergamon, Oxford, 1964; Mir, Moscow, 1967).

    Google Scholar 

  2. V. I. Vladimirov, “Collective Effects in Defect Ensembles,” in Problems of the Theory of Defects in Crystals (Nauka, Leningrad, 1987), pp. 43–57 [in Russian].

    Google Scholar 

  3. D. Kuhlmann-Wilsdorf, “The Low Energetic Structure Theory of Solid Plasticity,” in Dislocations in Solids, Ed. by F. R. N. Nabarro and M. S. Duesbery (Elsevier, Amsterdam, 2002), pp. 213–338.

    Google Scholar 

  4. A. Cadič and D. Edelen, Gauge Theory of Dislocations and Disclinations (Springer, Heidelberg, 1983; Mir, Moscow, 1987).

    Google Scholar 

  5. J. J. Gilman, “Micromechanics of Shear Banding,” Mech. Mater. 17(1), 83–96 (1994).

    Article  Google Scholar 

  6. E. E. Zasimchuk, “Collective Deformation Modes, Structure Formation, and Structural Instability,” in Cooperative Deformation Processes and Localization of Deformation (Naukova Dumka, Kiev, 1989), pp. 58–100 [in Russian].

    Google Scholar 

  7. Ya. B. Fridman, Mechanical Properties of Metals. Ch. 1. Deformation and Destruction (Mashinostroenie, Moscow, 1974) [in Russian].

    Google Scholar 

  8. T. Yokobori, An Interdisciplinary Approach to Fracture and Strength of Solids (Wolters Noordholf Scientific Publications, Groninger, 1968; Metallurgiya, Moscow, 1971) [in Russian].

    MATH  Google Scholar 

  9. A. V. Stepanov, “About the Premature Rupture,” Izv. Akad. Nauk SSSR, Ser. Fiz., Nos. 4–5, 797–802 (1935).

  10. L. B. Zuev, “Autowave Conception of Plastic Deformation Localization,” Metallofiz. Noveishie Tekhnol. 28, 1261–1276 (2006).

    CAS  Google Scholar 

  11. L. B. Zuev, “On the Waves of Plastic Flow Localization in Pure Metals and Alloys,” Ann. Phys. (New York) 16(4), 286–310 (2007).

    Article  ADS  CAS  Google Scholar 

  12. A. F. Portevin and F. Chatelier, “Le sur un phénoméne observé lors de l’essaie de traction d’alliages en cours de transformation,” C. R. Acad. Sci. Paris 176, 507–510 (1923).

    CAS  Google Scholar 

  13. A. H. Cottrell, “Discontinuous Flow,” in The Relation between the Structure and Mechanical Properties of Metals (Her Majesty’s Stationery Office, London, 1963; Metallurgiya, Moscow, 1967)

    Google Scholar 

  14. L. J. Cuddy and W. C. Leslie, “Some Aspects of Serrated Yielding in Substitutional Solid Solution of Iron,” Acta Metall. 20, 1157–1167 (1972).

    Article  CAS  Google Scholar 

  15. M. M. Krishtal, “Interrelation between the Instability and Mesoscopic Nonuniformity of Plastic Deformation: I. The Problems of “Abnormality” of Mechanical Properties of Materials in the Various Types of Instability of Plastic Deformation,” Fiz. Met. Metalloved. 92(3), 89–112 (2001) [Phys. Met. Metallogr. 92 (3), 293–299 (2001)].

    CAS  Google Scholar 

  16. Industrial Aluminum Alloys, Ed. by F. I. Kvasova and I. N. Fridlyander (Metallurgiya, Moscow, 1984) [in Russian].

    Google Scholar 

  17. R. W. K. Honeycombe, The Plastic Deformation of Metals (Amold, London, 1968; Mir, Moscow, 1972).

    Google Scholar 

  18. R. Hill, Mathematical Theory of Plasticity (GITTL, Moscow, 1956) [in Russian].

    Google Scholar 

  19. V. I. Trefilov, V. F. Moiseev, E. P. Pechkovskii, et al., Deformation Strengthening and Fracture of Polycrystalline Metals (Naukova Dumka, Kiev, 1987) [in Russian].

    Google Scholar 

  20. V. I. Danilov, L. B. Zuev, V. V. Gorbatenko, et al., “Use of Specle Interferometry for Studying Plastic Deformation Localization,” Zavod. Lab. 72(12), 40–45 (2006).

    Google Scholar 

  21. L. B. Zuev, V. I. Danilov, and B. S. Semukhin, “Time-Spatial Ordering upon Plastic Deformation of Solids,” Usp. Fiz. Met. 3(3), 237–304 (2002).

    CAS  Google Scholar 

  22. M. M. Krishtal, “Serrated Yield as the Cause of Anomalies in Strain-Rate Sensitivity and Temperature Dependence of Resistance to Deformation,” Fiz. Met. Metalloved. 85(1), 127–139 (1998) [Phys. Met. Metallogr. 85 (1), 97–105 (1998)].

    CAS  Google Scholar 

  23. V. I. Danilov, G. V. Shlyakhova, L. B. Zuev, et al., “Multistage Character of Plastic Flow and Macrolocalization of Deformation in the Fe-3%Si Polycrystals,” Fiz. Met. Metalloved. 98(3), 107–112 (2004) [Phys. Met. Metallogr. 98 (3), 333–338 (2004)].

    CAS  Google Scholar 

  24. V. I. Danilov, L. B. Zuev, I. O. Bolotina, and A. A. Zagumennyi, “Localization of Macrodeformation in Submicrocrystalline Titanium,” Fiz. Met. Metalloved. 106(3), 322–328 (2008) [Phys. Met. Metallogr. 106 (3), 311–317 (2008)].

    CAS  Google Scholar 

  25. L. B. Zuev, T. M. Poletika, and G. N. Narimanova, “The Relationship between Plastic Flow Macrolocalization and a Dislocation Structure,” Pis’ma Zh. Tekh. Fiz. 29(12), 74–77 (2003) [Tech. Phys. Lett. 29 (6), 519–520 (2003)].

    Google Scholar 

  26. M. M. Krishtal, “Nucleation and Growth of Deformation Bands upon Discontinuous Yield,” Fiz. Met. Metalloved. 75(5), 31–35 (1993) [Phys. Met. Metallogr. 75 (5), 480–482 (1993)].

    CAS  Google Scholar 

  27. A. Lowley and G. Mikine, Microplasticity (Metallurgiya, Moscow, 1972) [in Russian].

    Google Scholar 

  28. A. L. Roitburd, in Physics of Deformation Strengthening of Single Crystals (Naukova Dumka, Kiev, 1972) [in Russian].

    Google Scholar 

  29. P. G. McCormik, “Dynamic Strain Ageing,” Trans. Ind. Inst. Met. 39, 98–106 (1986).

    Google Scholar 

  30. T. M. Poletika, L. B. Zuev, and A. A. Nor, “The Microstructure of Local Strain Nuclei Observed for Zirconium Alloy in the Stage of Parabolic Work Hardening,” J. Appl. Phys. A(9), 73 (2001).

    Google Scholar 

  31. L. B. Zuev and V. I. Danilov, “Kinetics of Localized Plasticity Macrodomains at the Prefracture Stage in Metals,” Zh. Tekh. Fiz. 75(12), 102–105 (2005) [Tech. Phys. 50 (12), 1636–1639 (2005)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.I. Danilov, A.V. Bochkareva, L.B. Zuev, 2009, published in Fizika Metallov i Metallovedenie, 2009, Vol. 107, No. 6, pp. 660–667.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danilov, V.I., Bochkareva, A.V. & Zuev, L.B. Macrolocalization of deformation in the material with intermittent flow. Phys. Metals Metallogr. 107, 616–623 (2009). https://doi.org/10.1134/S0031918X0906012X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X0906012X

PACS numbers

Navigation