Skip to main content
Log in

New method of mechanical alloying of ODS steels using iron oxides

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Processes of mechanical alloying of oxide-dispersion-strengthened reactor pressure-vessel steels by cold high-pressure torsion of a powder mixture of low-stable Fe2O3 (Fe3O4) iron oxides and the bcc matrix alloyed with Y and Ti have been investigated using Mössbauer spectroscopy, X-ray diffraction analysis, and electron microscopy. Some features of decomposition of iron oxides and phase transformations in the matrices synthesized by mechanical alloying with formation of solid solutions supersaturated with oxygen and various compounds of oxygen with iron and alloying elements, in particular, special nanooxides of yttrium and titanium have been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Cayron, E. Rath, I. Chu, and S. Launois, “Microstructural Evolution of Y2O3 and MgAl2O4 ODS EUROFER Steels during Their Elaboration by Mechanical Milling and Hot Isostatic Pressing,” J. Nucl. Mater. 335, 83–102 (2004).

    Article  CAS  Google Scholar 

  2. S. Ukai, M. Harada, H. Okada, et al., “Alloying Design of Oxide Dispersion Strengthened Ferritic Steel for Long Life FBRs Core Materials,” J. Nucl. Mater. 204, 65–73 (1993).

    Article  CAS  Google Scholar 

  3. V. V. Sagaradze, V. I. Shalaev, V. L. Arbuzov, et al., “Radiation Resistance and Thermal Creep of ODS Ferritic Steels,” J. Nucl. Mater. 295, 265–272 (2000).

    Article  Google Scholar 

  4. A. R. Kuznetsov, S. A. Starikov, V. V. Sagaradze, et al., “Studying Deformation-Induced Segregation in the Fe-Cr-Ni Alloy,” Fiz. Met. Metallogr. 98(3), 65–71 (2004) [Phys. Met. Metallogr. 98, 294–306 (2004)].

    CAS  Google Scholar 

  5. A. R. Kuznetsov and V. V. Sagaradze, “On the Possible Mechanism of Low-Temperature Strain-Induced Dissolution of Intermetallic Phases in FCC Fe-Ni-Ti Alloys,” Fiz. Met. Metalloved. 93(5), 13–16 (2002) [Phys. Met. Metallogr. 93, 404–407 (2002)].

    CAS  Google Scholar 

  6. V. L. Gapontsev and V. V. Kondrat’ev, “Diffusion Phase Transformations in Nanocrystalline Alloys under the Effect of Severe Plastic Deformation,” Dokl. Akad. Nauk 385(5), 608–611 (2002) [Dokl.-Phys. 47, 576–579 (2002)].

    Google Scholar 

  7. M. Hoffmann, S. I. Campbell, and W. A. Kaszmarek, “Mechanochemical Transformation of Hematite to Magnetite—Structural Investigation,” Mat. Sci. Forum 228–231, 607–613 (1996).

    Google Scholar 

  8. J. Ding, W. F. Miao, R. Street, and P. S. McCormic, “Fe3O4/Fe Magnetic Composite Synthesized by Mechanical Alloying,” Scr. Mater. 35(11), 1307–1310 (1996).

    Article  CAS  Google Scholar 

  9. L. F. Vereshchagin, E. V. Zubova, K. P. Burkina, and G. A. Aparnikov, “Behavior of Oxides under the Effect of a High Pressure and Shear Stress,” Dokl. Akad. Nauk SSSR 196, 817–818 (1971).

    CAS  Google Scholar 

  10. V. A. Shabashov, A. V. Litvinov, A. G. Mukoseev, et al., “Phase Transformations in Iron Oxide-Metal Systems during Intensive Plastic Deformation,” Mater. Sci. Eng., A 361, 136–146 (2003).

    Article  CAS  Google Scholar 

  11. V. A. Shabashov, A. V. Litvinov, A. G. Mukoseev, et al., “Deformation-Induced Phase Transitions in the Iron Oxide-Metal System,” Fiz. Met. Metalloved. 98(6), 38–53 (2004) [Phys. Met. Metallogr. 98, 580–595 (2004)].

    CAS  Google Scholar 

  12. V. A. Shabashov, V. V. Sagaradze, A. V. Litvinov, et al., “Mechanical Synthesis in the Iron Oxide-Metal System,” Mater. Sci. Eng., A 392, 62–72 (2005).

    Article  CAS  Google Scholar 

  13. V. A. Shabashov, A. G. Mukoseev, and V. V. Sagaradze, “Formation of Solid Solution of Carbon in BCC Iron by Cold Deformation,” Mater. Sci. Eng., A 307, 91–97 (2001).

    Article  Google Scholar 

  14. I. P. Suzdalev, Dynamic Effects in Gamma-Resonance Spectroscopy (Atomizdat, Moscow, 1979) [in Russian].

    Google Scholar 

  15. W. G. Mumme and A. D. Wadsby, “The Structure of Orthorhombic Y2TiO5, an Example of Mixed Seven-and Fivefold Coordination,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 24, 1327–1333 (1968).

    Article  CAS  Google Scholar 

  16. V. A. Zavalishin, A. I. Deryagin, and V. V. Sagaradze, “Redistribution of Alloying Elements and Variation of the Magnetic Properties Induced by Cold Strain in Stable Austenitic Chromium-Nickel Steel: I. Experimental Observation of the Effect,” Fiz. Met. Metalloved. 75(2), 90–99 (1993) [Phys. Met. Metallogr. 75, 173–179 (1993)].

    CAS  Google Scholar 

  17. D. S. Gertsriken, V. F. Mazanko, V. M. Tyshkevich, and V. M. Fal’chenko, Mass Transfer in Metals at Low Temperatures under External Stresses (RIO IMF, Kiev, 1999) [in Russian].

    Google Scholar 

  18. Yu. A. Skakov, “High-Energy Cold Plastic Deformation, Diffusion and Mechanochemical Alloying,” Metalloved. Term. Obrab. Met., No. 4, 3–12 (2004).

  19. V. V. Sagaradze, “Nonmartensitic Phase Transformations in Steels upon Heavy Cold Deformation,” Phys. Met. Metallogr. 90(Suppl. 1), S18–S35 (2000).

    Google Scholar 

  20. V. A. Pechenkin and I. A. Stepanov, “Modeling the Radiation-Induced Segregation of Undersized Solutes near Grain Boundaries,” Mater. Sci. Forum 294–296, 771–774 (1999).

    Article  Google Scholar 

  21. V. V. Sagaradze, V. A. Shabashov, T. M. Lapina, et al., “Low-Temperature Strain-Induced Dissolution of Intermetallic Phases Ni3Al(Ti,Si,Zr) in FCC Fe-Ni Alloys,” Fiz. Met. Metalloved. 78(6), 49–61 (1994) [Phys. Met. Metallogr. 78, 619–628 (1994)].

    CAS  Google Scholar 

  22. P. C. Chen and P. G. Winchell, “Martensite Lattice Changes during Tempering,” Metall. Trans. A 11A(8), 1333–1339 (1980).

    CAS  Google Scholar 

  23. V. G. Gavrilyuk, Carbon Distribution in Steel (Naukova Dumka, Kiev, 1987) [in Russian].

    Google Scholar 

  24. V. V. Sagaradze, V. A. Shabashov, A. G. Mukoseev, et al., “Dissolution of Carbon-Containing Particles Such as Soot, Cementite, and VC Carbides in FCC Fe-Ni Alloys upon Severe Cold Deformation,” Fiz. Met. Metalloved. 91(3), 88–96 (2001) [Phys. Met. Metallogr. 91, 299–307 (2001)].

    CAS  Google Scholar 

  25. V. A. Shabashov, L. G. Korshunov, A. G. Mukoseev, et al., “Deformation-Induced Phase Transformation in a High-Carbon Steel,” Mater. Sci. Eng., A 346(1–2), 196–207 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.V. Sagaradze, A.V. Litvinov, V.A. Shabashov, N.F. Vil’danova, A.G. Mukoseev, K.A. Kozlov, 2006, published in Fizika Metallov i Metallovedenie, 2006, Vol. 101, No. 6, pp. 618–629.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sagaradze, V.V., Litvinov, A.V., Shabashov, V.A. et al. New method of mechanical alloying of ODS steels using iron oxides. Phys. Metals Metallogr. 101, 566–576 (2006). https://doi.org/10.1134/S0031918X06060081

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X06060081

PACS numbers

Navigation