Skip to main content
Log in

Nonlinear Surface Waves in a Symmetric Three-Layer Structure That Is Composed of Optical Media with Different Formation Mechanisms of Nonlinear Response

  • NONLINEAR OPTICS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

We consider the propagation of surface TM waves in a three-layer structure the inner layer of which is formed by a plate of a crystal with a Kerr type focusing nonlinearity, while its outer layers are uniaxial photorefractive crystals with the diffusion nonlinearity formation mechanisms. Nonlinear surface waves that differ in the character of their decay can propagate along the interfaces between the layers. The amplitudes of waves of one type decrease without oscillations with increasing distance from the interface as the waves propagate into the depth of the outer layers of the photorefractive crystals, while the amplitudes of waves of the other type decrease with oscillations. The wave profiles can be either symmetric or antisymmetric with respect to the center of the three-layer structure. The waves with the symmetric profile distribution, the amplitudes of which decrease into the depth of the photorefractive crystals either with or without oscillations, can be of two types, while those with the antisymmetric distribution can be only of one type. For the long-wavelength propagation regime of surface waves, explicit analytical dependences of the propagation constant on the characteristics of the layered structure are found and the conditions for their existence are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Zh. Qian, F. Jin, T. Lu, and K. Kishimoto, Acta Mech. 207, 183 (2009). https://doi.org/10.1007/s00707-008-0123-6

    Article  Google Scholar 

  2. I. S. Panyaev, N. N. Dadoenkova, Yu. S. Dadoenkova, I. A. Rozhleys, M. Krawczyk, I. L. Lyubchanckii, and D. G. Sannikov, J. Phys. D: Appl. Phys. 49, 435103 (2016). https://doi.org/10.1088/0022-3727/49/43/435103

    Article  ADS  Google Scholar 

  3. V. A. Trofimov, I. G. Zakharova, and P. Y. Shestakov, in Proceedings of the Symposiun on Progress in Electromagnetics Research Spring (PIERS), St. Petersburg,2017, p. 3378. https://doi.org/10.1109/PIERS.2017.8262342

  4. D. Mikhalake, R. G. Nazmitdinov, and V. K. Fedyanin, Sov. J. Part. Nucl. 20, 86 (1989).

    Google Scholar 

  5. H. Sakaguchi and B. A. Malomed, New J. Phys. 18, 025020 (2016). https://doi.org/10.1088/1367-2630/18/2/025020

    Article  ADS  Google Scholar 

  6. I. E. Dikshtein, S. A. Nikitov, and D. S. Nikitov, Phys. Solid State 40, 1710 (1998). https://doi.org/10.1134/1.1130640

    Article  ADS  Google Scholar 

  7. I. S. Panyaev and D. G. Sannikov, J. Opt. Soc. Am. B 33, 220 (2016).https://doi.org/10.1364/JOSAB.33.000220

  8. G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1995). https://doi.org/10.1016/C2009-0-21165-2

    MATH  Google Scholar 

  9. V. G. Besprozvannykh and V. P. Pervadchuk, Nonlinear Effects in Fiber Optics (Perm. Nats. Issled. Politekh. Univ., Perm, 2011) [in Russian].

  10. D. Kip, Appl. Phys. B 67, 131 (1998).

    Article  ADS  Google Scholar 

  11. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optics (Nauka, St. Petersburg, 1992; Springer, Berlin, 1991). https://doi.org/10.1007/978-3-540-47056-4

  12. A. P. Vinogradov, S. G. Erokhin, A. B. Granovskii, and M. Inoue, J. Commun. Technol. Electron. 49, 682 (2004).

    Google Scholar 

  13. I. V. Shadrivov, A. A. Sukhorukov, Yu. S. Kivshar, A. A. Zharov, A. D. Boardman, and P. Egan, Phys. Rev. E 69, 016617-1 (2004). https://doi.org/10.1103/PhysRevE.69.016617

    Article  ADS  MathSciNet  Google Scholar 

  14. I. V. Shadrivov, A. A. Sukhorukov, and Yu. S. Kivshar, Phys. Rev. E 67, 057602 (2003). https://doi.org/10.1103/PhysRevE.67.057602

    Article  ADS  Google Scholar 

  15. Yu. S. Kivshar, A. M. Kosevich, and O. A. Chubykalo, Phys. Rev. A 41, 1677 (1990). https://doi.org/10.1103/PhysRevA.41.1677

    Article  ADS  Google Scholar 

  16. F. Kh. Abdullaev, B. B. Baizakov, and B. A. Umarov, Opt. Commun. 156, 341 (1998).

    Article  ADS  Google Scholar 

  17. S. E. Savotchenko, Russ. Phys. J. 47, 556 (2004). https://doi.org/10.1023/B:RUPJ.0000046330.92744.73

    Article  Google Scholar 

  18. S. E. Savotchenko, Mod. Phys. Lett. B 32, 1850120 (2018). https://doi.org/10.1142/S0217984918501208

    Article  ADS  MathSciNet  Google Scholar 

  19. S. E. Savotchenko, J. Exp. Theor. Phys. 127, 437 (2018). https://doi.org/10.1134/S1063776118090108

    Article  ADS  Google Scholar 

  20. A. D. Boardman, M. M. Shabat, and R. F. Wallis, J. Phys. D: Appl. Phys. 24, 1702 (1991). https://doi.org/10.1088/0022-3727/24/10/002

    Article  ADS  Google Scholar 

  21. S. E. Savotchenko, Kondens. Sredy Mezhfaz. Granitsy 19, 567 (2017). https://doi.org/10.17308/kcmf.2017.19/238

    Article  Google Scholar 

  22. S. E. Savotchenko, Vestn. Voronezh. Univ., Ser. Fiz. Mat., No. 1, 44 (2018).

  23. S. E. Savotchenko, Surf. Interface 13, 157 (2018). https://doi.org/10.1016/j.surfin.2018.09.008

    Article  Google Scholar 

  24. T. H. Zhang, X. K. Ren, B. H. Wang, C. B. Lou, Z. J. Hu, W. W. Shao, Y. H. Xu, H. Z. Kang, J. Yang, D. P. Yang, L. Feng, and J. J. Xu, Phys. Rev. A 76, 013827 (2007). https://doi.org/10.1103/PhysRevA.76.013827

    Article  ADS  Google Scholar 

  25. B. A. Usievich, D. Kh. Nurligareev, V. A. Sychugov, L. I. Ivleva, P. A. Lykov, and N. V. Bogodaev, Quantum Electron. 40, 437 (2010). https://doi.org/10.1070/QE2010v040n05ABEH014223

    Article  ADS  Google Scholar 

  26. D. Kh. Nurligareev, B. A. Usievich, V. A. Sychugov, and L. I. Ivleva, Quantum Electron. 43, 14 (2013). https://doi.org/10.1070/QE2013v043n01ABEH014913

    Article  ADS  Google Scholar 

  27. S. A. Chetkin, Quantum Electron. 41, 980 (2011). https://doi.org/10.1070/QE2011v041n11ABEH014660

    Article  ADS  Google Scholar 

  28. D. Mikhalake and V. K. Fedyanin, Theor. Math. Phys. 54, 289 (1983).

    Article  Google Scholar 

  29. I. V. Gerasimchuk and A. S. Kovalev, Low Temp. Phys. 26, 586 (2000). https://doi.org/10.1063/1.1289129

    Article  ADS  Google Scholar 

  30. M. S. Hamada, A. I. Assa’d, H. S. Ashour, and M. M. Shabat, J. Microwaves Optoelectron. 5, 45 (2006).

  31. M. S. Hamada and A. I. Assa’d, J. Al Azhar Univ.-Gaza (Natural Sci.) 13, 93 (2011).

    Google Scholar 

  32. A. I. Assa’d and M. S. Hamada, Turk. J. Phys. 36, 207 (2012). https://doi.org/10.3906/fiz-1106-8

    Article  Google Scholar 

  33. O. V. Korovai and P. I. Khadzhi, Phys. Solid State 50, 1165 (2008). https://doi.org/10.1134/S1063783408060279

    Article  ADS  Google Scholar 

  34. O. V. Korovai and P. I. Khadzhi, Phys. Solid State 52, 243 (2010). https://doi.org/10.1134/S106378341

    Article  Google Scholar 

  35. S. E. Savotchenko, Nelin. Mir 3, 25 (2018).

    Google Scholar 

  36. S. E. Savotchenko, Phys. Solid State 61, 495 (2019). https://doi.org/10.1134/S1063783419040255

    Article  ADS  Google Scholar 

  37. S. E. Savotchenko, Phys. Solid State 61, 575 (2019). https://doi.org/10.1134/S1063783419040243

    Article  ADS  Google Scholar 

  38. G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crossignani, P. Porto, E. J. Sharp, and R. R. Neurgaonkar, Phys. Rev. Lett. 71, 533 (1993).

    Article  ADS  Google Scholar 

  39. M. D. I. Castillo, P. A. M. Aguilar, J. J. Sanches-Mondragon, S. Stepanov, and V. Vysloukh, Appl. Phys. Lett. 4, 408 (1994).

    Article  ADS  Google Scholar 

  40. D. Zhang, Z. Li, W. Hu, and B. Cheng, Appl. Phys. Lett. 67, 2431 (1995). https://doi.org/10.1063/1.114597

    Article  ADS  Google Scholar 

  41. E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, Appl. Phys. Lett. 85, 2193 (2004). https://doi.org/10.1063/1.1794854

    Article  ADS  Google Scholar 

  42. P. M. Petersen, A. Marrakchi, P. Buchhave, and P. E. Andersen, Ferroelectics 174, 149 (1995). https://doi.org/10.1080/00150199508216944

    Article  Google Scholar 

  43. E. Canoglu, C. M. Yang, and E. Garmire, Appl. Phys. Lett. 69, 316 (1996). https://doi.org/10.1063/1.118045

    Article  ADS  Google Scholar 

  44. S. J. Jensen, Spatial Structures and Temporal Dynamics in Photorefractive Nonlinear Systems (Roskilde, Denmark, 1999).

    Google Scholar 

  45. K. Buse, C. Denz, and W. Krolikowski, Appl. Phys. B 95, 389 (2009). https://doi.org/10.1007/s00340-009-3530-z

    Article  ADS  Google Scholar 

  46. Naim Ben Ali, Chin. J. Phys. 55, 2384 (2017). https://doi.org/10.1016/j.cjph.2017.10.008

    Article  MathSciNet  Google Scholar 

  47. N. Zhong, Z. Wang, M. Chen, X. Xin, R. Wu, Y. Cen, and Y. Li, Sens. Actuators, B 254, 133 (2018). https://doi.org/10.1016/j.snb.2017.07.032

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Savotchenko.

Ethics declarations

The author declares that he has no conflict of interest.

Additional information

Translated by V. Rogovoi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savotchenko, S.E. Nonlinear Surface Waves in a Symmetric Three-Layer Structure That Is Composed of Optical Media with Different Formation Mechanisms of Nonlinear Response. Opt. Spectrosc. 128, 345–354 (2020). https://doi.org/10.1134/S0030400X20030170

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20030170

Keywords:

Navigation