Skip to main content
Log in

Mechanism by which a single water molecule affects primary charge separation kinetics in a bacterial photosynthetic reaction center of Rhodobacter sphaeroides

  • Spectroscopy of Atoms and Molecules
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Using quantum-chemical methods, we have studied the role played by water molecules W-A and W-B that are bound by hydrogen bonds to accessory bacteriochlorophyll molecules B A and B B in the process of primary charge separation in the reaction center of Rhodobacter Sphaeroides. We have found that the occurrence of a rotational mode of the W-A molecule at 32 cm−1 and/or its harmonics in stimulated emission of an electron donor P* and the dynamics of population of the states P+B A and P+H A may be related to the structural heterogeneity of the reaction center and the existence of a conformation in which the W-A molecule is predominantly involved in one hydrogen bond (with BA). Based on the calculated redox potentials B A and P, it has been shown that the appearance of the W-A molecule in the reaction center reduces the energy of the P+B A state by ∼600 cm−1. This is somewhat smaller than the influence of the amino-acid residue TyrM210 (∼870 cm−1) and correlates well with a substantial decrease in the electron transfer rate in mutant forms of reaction centers GM203L (which do not contain W-A molecules) and YM210F (in which TyrM210 is replaced with Phe). The data obtained allow us to suggest that rotation of the water molecule with a fixed position of its H atom that is involved in a hydrogen bond with the keto carbonyl group of B A is initiated due to the charge separation between the halves of special pair P and the formation of the state P + A P B . The large effect of this rotation on the kinetics of population of the states P+B A and P+H A after the excitation of P is quite consistent with its influence on the energy of the state P+B A .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Deisenhofer, O. Epp, K. Miki, R. Huber, and H. Michel, Mol. Biol. 180, 385 (1984).

    Article  Google Scholar 

  2. J. Deisenhofer, O. Epp, K. Miki, R. Huber, and H. Michel, Nature 318, 618 (1985).

    Article  ADS  Google Scholar 

  3. H. Michel, O. Epp, and J. Deisenhofer, EMBO J. 5, 2445 (1986).

    Google Scholar 

  4. U. Ermler, G. Fritzsch, S. K. Buchanan, and H. Michel, Structure 2, 925 (1994).

    Article  Google Scholar 

  5. P. Maroti, C. Kirmaier, C. Wraight, D. Holten, and R. M. Pearlstein, Biochim. Biophys. Acta 810, 132 (1985).

    Article  Google Scholar 

  6. W. Holzapfel, U. Finkele, W. Kaiser, D. Oesterhelt, H. Scheer, H. U. Stilz, and W. Zinth, Chem. Phys. Lett. 160, 1 (1989).

    Article  ADS  Google Scholar 

  7. W. Holzapfel, U. Finkele, W. Kaiser, D. Oesterhelt, H. Scheer, H. U. Stilz, and W. Zinth, Proc. Natl. Acad. Sci. USA 160, 5168 (1990).

    Article  ADS  Google Scholar 

  8. G. R. Fleming, J. L. Martin, and J. Breton, Nature 333, 190 (1988).

    Article  ADS  Google Scholar 

  9. J. Breton, J. L. Martin, A. Migus, A. Antonetti, and A. Orszag, Proc. Natl. Acad. Sci. USA 83, 5121 (1986).

    Article  ADS  Google Scholar 

  10. V. A. Shuvalov, A. V. Klevanik, A. V. Sharkov, Yu. A. Matveetz, and P. G. Krukov, FEBS Lett. 91, 135 (1978).

    Article  Google Scholar 

  11. T. Arlt, S. Schmidt, W. Kaiser, C. Lauterwasser, M. Meyer, H. Scheer, and W. Zinth, Proc. Natl. Acad. Sci. USA 90, 11757 (1993).

    Article  ADS  Google Scholar 

  12. A. R. Holzwarth and M. G. Muller, Biochemistry 35, 11820 (1996).

    Article  Google Scholar 

  13. I. H. M. van Stokkum, L. M. Beekman, M. R. Jones, M. E. van Brederode, and R. van Grondelle, Biochemistry 36, 11360 (1997).

    Article  Google Scholar 

  14. S. Sporlein, W. Zinth, and J. Wachtveitl, J. Phys. Chem. B 102, 7492 (1998).

    Article  Google Scholar 

  15. A. Ya. Shkuropatov and V. A. Shuvalov, FEBS Lett. 322, 168 (1993).

    Article  Google Scholar 

  16. S. Schmidt, T. Arlt, P. Hamm, H. Huber, T. Nagele, J. Wachtveitl, M. Meyer, H. Scheer, and W. Zinth, Chem. Phys. Lett. 223, 116 (1994).

    Article  ADS  Google Scholar 

  17. S. Schmidt, T. Arlt, P. Hamm, H. Huber, T. Nagele, J. Wachtveitl, W. Zinth, M. Meyer, and H. Scheer, Spectrochim. Acta 51, 1565 (1995).

    Article  Google Scholar 

  18. J. T. M. Kennis, A. Ya. Shkuropatov, I. H. M. van Stokkum, P. Gast, A. J. Hoff, V. A. Shuvalov, and T. J. Aartsma, Biochemistry 36, 16231 (1997).

    Article  Google Scholar 

  19. S. Sporlein, W. Zinth, M. Meyer, H. Scheer, and J. Wachtveitl, Chem. Phys. Lett. 322, 454 (2000).

    Article  ADS  Google Scholar 

  20. S. Larsson, M. Braga, A. Broo, and B. Kallebring, Int. J. Quantum Chem. 18, 99 (1991).

    Article  Google Scholar 

  21. L. M. P. Beekman, R. W. Visschers, R. Monshouwer, M. T. Heer-Dawson, A. Mattioli, P. McGlynn, C. N. Hunter, B. Robert, I. H. M. van Stokkum, R. van Grondelle, and M. R. Jones, Biochemistry 34, 14712 (1995).

    Article  Google Scholar 

  22. L. M. P. Beekman, I. H. M. van Stokkum, R. Mon- shouwer, A. J. Rijnders, P. McGlynn, R. W. Visschers, M. R. Jones, and R. van Grondelle, J. Phys. Chem. 100, 7256 (1996).

    Article  Google Scholar 

  23. A. G. Yakovlev, A. Ya. Shkuropatov, and V. A. Shuvalov, Biochemistry 41, 14019 (2002).

    Article  Google Scholar 

  24. N. J. Cherepy, A. P. Shreve, L. J. Moore, S. G. Boxer, and R. A. Mathies, Biochemistry 36, 8559 (1997).

    Article  Google Scholar 

  25. P. A. Lyle, S. V. Kolaczkowski, and G. J. Small, J. Phys. Chem. 97, 6924 (1993).

    Article  Google Scholar 

  26. W. W. Parson and A. J. Warshel, Am. Chem. Soc. 109, 6152 (1987).

    Article  Google Scholar 

  27. S. Larsson and B. Kallebring, Int. J. Quantum Chem., Quantum Biol. Sym. 17, 189 (1990).

    Article  Google Scholar 

  28. E. J. P. Lathrop and R. A. Friesner, J. Phys. Chem. 98, 3056 (1994).

    Article  Google Scholar 

  29. N. P. Pawlowicz, R. van Grondelle, I. H. M. van Stokkum, J. Breton, M. R. Jones, and M. L. Groot, Biophys. J. 95, 1268 (2008).

    Article  Google Scholar 

  30. T. A. Cohen Stuart and R. van Grondelle, Chem. Phys. Lett. 474, 352 (2009).

    Article  ADS  Google Scholar 

  31. R. A. Khatypov, A. Yu. Khmelnitskiy, A. M. Khristin, T. Yu. Fufina, L. G. Vasilieva, and V. A. Shuvalov, Biochimica et Biophysica Acta (2011).

  32. A. G. Yakovlev, M. R. Jones, J. A. Potter, P. K. Fyfe, L. G. Vasilieva, A. Y. Shkuropatov, and V. A. Shuvalov, Chem. Phys. 319, 297 (2005).

    Article  ADS  Google Scholar 

  33. N. Ivashin, B. Kallebring, S. Larsson, and O. Hansson, J. Phys. Chem. B 102, 5017 (1998).

    Article  Google Scholar 

  34. N. Ivashin and S. Larsson, J. Phys. Chem. B 106, 3996 (2002).

    Article  Google Scholar 

  35. N. Ivashin and S. Larsson, J. Phys. Chem. B 112, 12124 (2008).

    Article  Google Scholar 

  36. E. Shchupak and N. Ivashin, Opt. Spectrosc. 112, 212 (2012).

    Article  ADS  Google Scholar 

  37. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 09, Revision A.1(Gaussian, Inc., Wallingford, 2009).

    Google Scholar 

  38. P. Flükiger, H. P. Lüthi, S. Portmann, and J. Weber, Molekel 5.4.0.8(Swiss Center for Scientific Computing Manno, 2009).

  39. R. D. Dennington II, T. Keith, J. Millam, K. Eppinnett, W. L. Hovell, and R. Gilliland, 2008 GaussView, Version 5.0 (Semichem, Inc., Shawnee Mission, 2008).

    Google Scholar 

  40. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  ADS  Google Scholar 

  41. A. D. Becke, Phys. Rev. 38, 3098 (1988).

    Article  ADS  Google Scholar 

  42. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. 37, 785 (1988).

    Article  ADS  Google Scholar 

  43. K. Muller-Dethlefs and P. Hobza, Chem. Rev. 100, 143 (2000).

    Article  Google Scholar 

  44. J. H. Lii, B. Y. Ma, and N. L. Allinger, J. Comput. Chem. 20, 1593 (1999).

    Article  Google Scholar 

  45. F. Weinhold and C. R. Landis, Chemistry Education: Research and Practise in Europe 2, 91 (2001).

    Article  Google Scholar 

  46. A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev. 88, 899 (1988).

    Article  Google Scholar 

  47. B. F. King and F. Weinhold, J. Chem. Phys. 103, 333 (1995).

    Article  ADS  Google Scholar 

  48. F. Weinhold, THEOCHEM J. Mol. Struct. 398, 181 (1997).

    Article  Google Scholar 

  49. F. Weinhold, Encyclopedia of Computational Chemistry 3, 1792 (1998).

    Google Scholar 

  50. S. Miertus, E. Scrocco, and J. Tomasi, J. Chem. Phys. 55, 117 (1981).

    Google Scholar 

  51. J. Tomasi, B. Mennucci, and E. Cances, J. Mol. Struct. (Theochem) 464, 211 (1999).

    Article  Google Scholar 

  52. P. Winget, C. J. Cramer, and D. G. Truhlar, Theor. Chem. Acc. 112, 217 (2004).

    Article  Google Scholar 

  53. M. H. Stowell, T. M. McPhillips, D. C. Rees, S. M. Soltis, E. Abresch, and G. Feher, Science 276, 812 (1997).

    Article  Google Scholar 

  54. G. Katona, A. Snijder, P. Gourdon, U. Andreasson, O. Hansson, L. E. Andreasson, and R. Neutze, Nat. Struct. Mol. Biol. 12, 630 (2005).

    Article  Google Scholar 

  55. J. A. Potter, P. K. Fyfe, D. Frolov, M. C. Wakeham, R. van Grondelle, B. Robert, and M. R. Jones, J. Biol. Chem. 280, 27155 (2005).

    Article  Google Scholar 

  56. V. Nagarajan, W. W. Parson, D. Gaul, and C. Schenk, Proc. Natl. Acad. Sci. USA 87, 7888 (1990).

    Article  ADS  Google Scholar 

  57. U. Finkele, C. Lauterwasser, W. Zinth, K. A. Gray, and D. Oesterhelt, Biochemistry 29, 8517 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Ivashin.

Additional information

Original Russian Text © N.V. Ivashin, E.E. Shchupak, 2012, published in Optika i Spektroskopiya, 2012, Vol. 113, No. 5, pp. 525–538.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivashin, N.V., Shchupak, E.E. Mechanism by which a single water molecule affects primary charge separation kinetics in a bacterial photosynthetic reaction center of Rhodobacter sphaeroides . Opt. Spectrosc. 113, 474–486 (2012). https://doi.org/10.1134/S0030400X1209007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X1209007X

Keywords

Navigation