Skip to main content
Log in

Transgenic Expression of chit42 gene from Metarhiziumanisopliae in Trichoderma harzianum Enhances Antagonistic Activity against Botrytis cinerea

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Сhitinases expressed by some beneficial fungi are crucial for the biocontrol of phytopathogens. The activity of chitinolytic strains of Trichoderma sp. may be enhanced by increasing the expression of chitinases. We describe the Trichoderma strain Mchit42 which expresses a transgenic chitinase chit42 from Metarhizium anisopliae. Inhibitory effects against plant pathogens were tested. Comparison of WT (T30) and OE (Mchit42) indicated that overexpression of M. anisopliaechit42 did not alter Trichoderma growth, while enhancing the expression of endogenous chitinase, β-1,3-glucanases, and polygalacturonase and increasing the antagonistic activity of Trichoderma against Botrytis cinerea. This work confirmed that the expression of the entomopathogenic fungi-sourced chit42 genes in Trichodermaharzianum enhances the efficiency of Trichoderma biocontrol against targeted pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Steyaert J.M., Stewart A., Jaspers M., Carpenter M., Ridgway H.J. 2004. Co-expression of two genes, a chitinase (chit42) and proteinase (prb1), implicated in mycoparasitism by Trichoderma hamatum. Mycologia. 96, 1245–1252.

    Article  PubMed  CAS  Google Scholar 

  2. Carrera E., Ruiz-Rivero O., Peres L.E., Atares A., Garcia-Martinez J.L. 2012. Characterization of the procera tomato mutant shows novel functions of the SlDELLA protein in the control of flower morphology, cell division and expansion, and the auxin-signaling pathway during fruit-set and development. Plant Physiol. 160, 1581–1596.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Chet I., Inbar J., Hadar I. 1997. Fungal antagonists and mycoparasites. In: The Mycota IV: Environmental and Microbial Relationships. Berlin: Springer-Verlag, 165–184.

    Google Scholar 

  4. Kowsari M., Motallebi M., Zamani R.M. 2014. Construction of new GFP-tagged fusants for Trichoderma harzianum with enhanced biocontrol activity. Plant Prot. Res. 54, 122−131.

    Article  CAS  Google Scholar 

  5. Saksirirat W., Chareerak P., Bunyatrachata W. 2009. Induced systemic resistance of biocontrol fungus, Trichoderma spp. against bacterial and gray leaf spot in tomatoes. As. J. Food Ag-Ind. 2, 99–104.

    Google Scholar 

  6. Bolar J.P., Norelli J.L., Harman G.E., Brown S.K., Aldwinckle H.S. 2001. Synergistic activity of endochitinase and exochitinase from Trichoderma atroviride (T. harzianum) against the pathogenic fungus (Venturia inaequalis) in transgenic apple plants. Transgenic Res. 10, 533–543.

    Article  PubMed  CAS  Google Scholar 

  7. Grayston S.J. 1996. Rhizosphere carbon flow in trees, in comparison to annual plants: The importance of root exudation and its impact on microbial activity and nutrient cycling. Appl. Soil Ecol. 5, 29–56.

    Article  Google Scholar 

  8. Cumagun C.J.R. 2012. Managing plant diseases and promoting sustainability and productivity with Trichoderma. J. Agric Sci. Technol. 14, 699–714.

    Google Scholar 

  9. Vinale F., Sivasithamparam K., Ghisalberti E.L, Marra R., Woo S.L, Lorito M. 2008. Trichoderma–plant–pathogen interactions. Soil Biol. Biochem. 40, 1−10.

    Article  CAS  Google Scholar 

  10. Harman G.E, Howell C.R, Viterbo A., Chet I., Lorito M. 2004. Trichoderma species: Opportunistic, avirulent plant symbionts. Nat. Rev. 2, 43–56.

    CAS  Google Scholar 

  11. Lopez R.C, Gomez-Gomez L. 2009. Isolation of a new fungi and wound-induced chitinase class in corms of Crocus sativus plant. Physiol. Biochem. 47, 426–434.

    CAS  Google Scholar 

  12. Collinge D.B., Kragh K.M., Mikkelson J.D., Nielson K.K., Rasmussen U., Vad K. 1993. Plant chitinases. Plant J. 3, 31–40.

    Article  PubMed  CAS  Google Scholar 

  13. Gokul B., Lee J.H., Song K.B., Rhee S.K., Kim C.H., Panda T. 2000. Characterization and applications of chitinases from Trichoderma harzianum. Bioprocess Eng. 23, 691–694.

    Article  CAS  Google Scholar 

  14. Harighi M.J., Zamani M.R., Motallebi M. 2007. Evaluation of antifungal activity of purified chitinase 42 from Trichoderma atroviride PTCC5220. Biotechnology. 6, 28–33.

    Article  CAS  Google Scholar 

  15. Lee S.Y., Tindwa H., Lee Y.S., Naing K.W., Hong S.H., Nam Y., Kim K.Y. 2012. Biocontrol of anthracnose in pepper using chitinase, beta-1,3-glucanase, and 2-furancarboxaldehyde produced by Streptomyces cavourensis SY224. J. Microbiol. Biotechnol. 22, 1359–1366.

    Article  PubMed  CAS  Google Scholar 

  16. Haggag W.M., Abdallh E.G. 2012. Purification and characterization of chitinase produced by endophytic Streptomyces hygroscopicus against some phytopathogens. J. Microbiol. Res. 2, 145–151.

    Article  Google Scholar 

  17. Limón M.C., Chacón M.R., Mejías R., Delgado-Jarana J., Rincón A.M., Codón A.C., Benítez T. 2004. Increased antifungal and chitinase specific activities of Trichoderma harzianum CECT 2413 by addition of a cellulose binding domain. Appl. Microbiol. Biotechnol. 64, 675–685.

    Article  PubMed  CAS  Google Scholar 

  18. Amin F., Razdan V.K., Mohiddin F.A., Bhat K.A., Banday S. 2010. Potential of Trichoderma species as biocontrol agents of soil borne fungal propagules. J. Phytol. 2, 38–41.

    Google Scholar 

  19. Harighi M.J., Motallebi M., Zamani M.R. 2006. Antifungal activity of heterologous expressed chitinase 42 (Chit42) from Trichoderma atroviride PTCC5220. Iran J. Biotech. 4, 95–103.

    CAS  Google Scholar 

  20. Steyaert J.M., Ridgway H.J., Elad Y. 2003. Genetic basis of mycoparasitism: A mechanism of biological control by species of Trichoderma. New Zeal. J. Crop Hort. Sci. 31, 281–291.

    Article  Google Scholar 

  21. da Silva M.V., Santi L., Staats C.C., da Costa A.M., Colodel E.M., Driemeier D., Vainstein M.H., Schrank A. 2005. Cuticle-induced endo/exoacting chitinase CHIT30 from Metarhizium anisopliae is encoded by an ortholog of the chi3 gene. Res. Microbiol. 156, 382–392.

    Article  PubMed  CAS  Google Scholar 

  22. Bergemann S.E., Miller S.L., Garbelotto M. 2005. Microsatellite loci from Russula brevipes, a common ectomycorrhizal associate of several tree species in North America. Mol. Ecol. Notes. 5, 472–474.

    Article  CAS  Google Scholar 

  23. García I., Lora J.M., de la Cruz J., Benítez T., Llobell A., Pintor-Toro J.A. 1994. Cloning and characterization of a chitinase (CHIT42) cDNA from the mycoparasitic fungus Trichoderma harzianum. Curr. Genet. 27, 83–89.

    Article  PubMed  Google Scholar 

  24. Gu J., Ye C. 2011. pYEMF, a pUC18-derived XcmI T‑vector for efficient cloning of PCR products. Mol. Biotechnol. 47, 229–233.

    Article  PubMed  CAS  Google Scholar 

  25. Kirubakaran S.I., Sakthivel N. 2007. Cloning and overexpression of antifungal barley chitinase gene in Escherichia coli. Protein Expr. Purif. 52, 159–166.

    Article  PubMed  CAS  Google Scholar 

  26. Mullins E.D., Chen X., Romaine P., Raina R., Geiser D.M., Kang S. 2001. Agrobacterium-mediated transformation of Fusarium oxysporum: An efficient tool for insertional mutagenesis and gene transfer. Phytopathology. 91, 173–180.

    Article  PubMed  CAS  Google Scholar 

  27. Reissig J., Strominger J., Leloir L. 1955. A modified colorimetric method for the estimation of N-acetylamino sugars. J. Biol. Chem. 217, 959–966.

    PubMed  CAS  Google Scholar 

  28. Bonev B., Hooper J., Parisot J. 2008. Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method. J. Antimicrob. Chemother. 61, 1295–1301.

    Article  PubMed  CAS  Google Scholar 

  29. Frazzon A.P.G., Vaz I.S., Masuda A., Schrank A., Vainstein M.H. 2000. In vitro assessment of Metarhiaium anisopliae to control the tick Boophilus microplus. Vet. Parasitol. 94, 117–125.

    Article  PubMed  CAS  Google Scholar 

  30. Keller N.P., Turner G., Bennett J.W. 2005. Fungal secondary metabolism—from biochemistry to genomics. Nat. Rev. Microbiol. 3, 937–947.

    Article  PubMed  CAS  Google Scholar 

  31. Yu J.H., Keller N. 2005. Regulation of secondary metabolism in filamentous fungi. Annu. Rev. Phytopathol. 43, 437–458.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKONWLEDGMENTS

This work was supported by National Key Research and Development Program of China (2017YFD0200901 and 2017YFD0200400), National Natural Science Foundation of China (31672072) and Agricultural Extension Project of Shanghai Municipal Agricultural Commission (2017) no. 1-6. We thank the laboratory of Plant Pathology of Shanghai Jiaotong University for providing us Metarhizium anisopliae CY1 and Trichoderma harzianum T30.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Chen.

Additional information

1The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, H., Li, Y.Y., Liu, Z.C. et al. Transgenic Expression of chit42 gene from Metarhiziumanisopliae in Trichoderma harzianum Enhances Antagonistic Activity against Botrytis cinerea. Mol Biol 52, 668–675 (2018). https://doi.org/10.1134/S002689331805014X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002689331805014X

Keywords:

Navigation