Skip to main content
Log in

Transcription factor Comr acts as a direct activator in the genetic program controlling spermatogenesis in D. melanogaster

Molecular Biology Aims and scope Submit manuscript

Abstarct

In Drosophila melanogaster differentiation of the male germ cells is accompanied by chromatin rearrangement and activation of the specific genes. These processes are regulated by few transcription factors that belong to two classes, can and aly that form distinct functional complexes. Mechanisms of action of aly and can class transcription factors on gene expression and chromatin state remain unclear. To investigate this question we have built the whole genome binding profile of transcription factor Comr belonging to aly class using the tissue-specific DamID method. Resulting data were correlated with gene expression in comr (aly class) and can (can class) mutant testes. It was shown that Comr is a direct activator for about 300 testis-specific genes. Furthermore a set of genes revealed decreased expression in comr mutants but did not bind Comr protein, suggesting the existence of secondary regulation. Indeed, among the Comr gene targets we found a gene coding an uncharacterized transcription factor that could be a secondary participant in the genetic pathway in spermatocytes. These date allowed us to advance a model of gene activation needed for male gametes differentiation in D. melanogaster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abbreviations

tMAC:

testis-specific meiosis arrest complex

tTAF:

testis-specific TBP-associated factor

References

  1. Fuller M.T. 1993. Spermatogenesis. In: The Development of Drosophila melanogaster. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press, pp. 71–148.

    Google Scholar 

  2. Chen X., Hiller M., Sancak Y., Fuller M.T. 2005. Tissue-specific TAFs counteract Polycomb to turn on terminal differentiation. Science. 310, 869–872.

    Article  CAS  PubMed  Google Scholar 

  3. Chen X., Lu C., Prado J.R., Eun S.H., Fuller M.T. 2011. Sequential changes at differentiation gene promoters as they become active in a stem cell lineage. Development. 138, 2441–2450.

    Article  CAS  PubMed  Google Scholar 

  4. Yamashita Y.M., Fuller M.T. 2005. Asymmetric stem cell division and function of the niche in the Drosophila male germ line. Int. J. Hematol. 82, 377–380.

    Article  CAS  PubMed  Google Scholar 

  5. White-Cooper H. 2010. Molecular mechanisms of gene regulation during Drosophila spermatogenesis. Reproduction. 139, 11–21.

    Article  CAS  PubMed  Google Scholar 

  6. White-Cooper H., Davidson I. 2011. Unique aspects of transcription regulation in male germ cells. Cold Spring Harbor Perspect. Biol. 3(7), a002626. doi 10.1101/cshperspect.a002626

    Article  Google Scholar 

  7. Boutanaev A.M., Kalmykova A.I., Shevelyov Y.Y., Nurminsky D.I. 2002. Large clusters of co-expressed genes in the Drosophila genome. Nature. 420, 666–669.

    Article  CAS  PubMed  Google Scholar 

  8. Shevelyov Y.Y., Lavrov S.A., Mikhaylova L.M., Nurminsky I.D., Kulathinal R.J., Egorova K.S., Rozovsky Y.M., Nurminsky D.I. 2009. The B-type lamin is required for somatic repression of testis-specific gene clusters. Proc. Natl. Acad. Sci. U. S. A. 106, 3282–3287.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Gan Q., Schones D.E., Ho Eun S., Wei G., Cui K., Zhao K., Chen X. 2010. Monovalent and unpoised status of most genes in undifferentiated cell-enriched Drosophila testis. Genome Biol. 11, R42.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Barreau C., Benson E., Gudmannsdottir E., Newton F., White-Cooper H. 2008. Post-meiotic transcription in Drosophila testes. Development. 135, 1897–1902.

    Article  CAS  PubMed  Google Scholar 

  11. Lin T.Y., Viswanathan S., Wood C., Wilson P.G., Wolf N., Fuller M.T. 1996. Coordinate developmental control of the meiotic cell cycle and spermatid differentiation in Drosophila males. Development. 122, 1331–1341.

    CAS  PubMed  Google Scholar 

  12. White-Cooper H., Schafer M.A., Alphey L.S., Fuller M.T. 1998. Transcriptional and post-transcriptional control mechanisms coordinate the onset of spermatid differentiation with meiosis I in Drosophila. Development. 125, 125–134.

    CAS  PubMed  Google Scholar 

  13. Beall E.L., Lewis P.W., Bell M., Rocha M., Jones D.L., Botchan M.R. 2007. Discovery of tMAC: A Drosophila testis-specific meiotic arrest complex paralogous to Myb-Muv B. Genes Dev. 21, 904–919.

    Article  CAS  PubMed  Google Scholar 

  14. Korenjak M., Taylor-Harding B., Binne U.K., Satterlee J.S., Stevaux O., Aasland R., White-Cooper H., Dyson N., Brehm A. 2004. Native E2F/RBF complexes contain Myb-interacting proteins and repress transcription of developmentally controlled E2F target genes. Cell. 119, 181–193.

    Article  CAS  PubMed  Google Scholar 

  15. Lewis P.W., Beall E.L., Fleischer T.C., Georlette D., Link A.J., Botchan M.R. 2004. Identification of a Drosophila Myb-E2F2/RBF transcriptional repressor complex. Genes Dev. 18, 2929–2940.

    Article  CAS  PubMed  Google Scholar 

  16. Georlette D., Ahn S., MacAlpine D.M., Cheung E., Lewis P.W., Beall E.L., Bell S.P., Speed T., Manak J.R., Botchan M.R. 2007. Genomic profiling and expression studies reveal both positive and negative activities for the Drosophila Myb MuvB/dREAM complex in proliferating cells. Genes Dev. 21, 2880–2896.

    Article  CAS  PubMed  Google Scholar 

  17. Sim C.K., Perry S., Tharadra S.K., Lipsick J.S., Ray A. 2012. Epigenetic regulation of olfactory receptor gene expression by the Myb-MuvB/dREAM complex. Genes Dev. 26, 2483–2498.

    Article  CAS  PubMed  Google Scholar 

  18. Manak J.R., Mitiku N., Lipsick J.S. 2002. Mutation of the Drosophila homologue of the Myb protooncogene causes genomic instability. Proc. Natl. Acad. Sci. U. S. A. 99, 7438–7443.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Manak J.R., Wen H., Van T., Andrejka L., Lipsick J.S. 2007. Loss of Drosophila Myb interrupts the progression of chromosome condensation. Nature Cell Biol. 9, 581–587.

    Article  CAS  PubMed  Google Scholar 

  20. White-Cooper H., Leroy D., MacQueen A., Fuller M.T. 2000. Transcription of meiotic cell cycle and terminal differentiation genes depends on a conserved chromatin associated protein, whose nuclear localisation is regulated. Development. 127, 5463–7543.

    CAS  PubMed  Google Scholar 

  21. Jiang J., White-Cooper H. 2003. Transcriptional activation in Drosophila spermatogenesis involves the mutually dependent function of aly and a novel meiotic arrest gene cookie monster. Development. 130, 563–573.

    Article  CAS  PubMed  Google Scholar 

  22. Wang Z., Mann R.S. 2003. Requirement for two nearly identical TGIF-related homeobox genes in Drosophila spermatogenesis. Development. 130, 2853–2865.

    Article  CAS  PubMed  Google Scholar 

  23. Jiang J., Benson E., Bausek N., Doggett K., WhiteCooper H. 2007. Tombola, a tesmin/TSO1-family protein, regulates transcriptional activation in the Drosophila male germline and physically interacts with always early. Development. 134, 1549–1559.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Hiller M.A., Lin T.Y., Wood C., Fuller M.T. 2001. Developmental regulation of transcription by a tissuespecific TAF homolog. Genes Dev. 15, 1021–1030.

    Article  CAS  PubMed  Google Scholar 

  25. Hiller M., Chen X., Pringle M.J., Suchorolski M., Sancak Y., Viswanathan S., Bolival B., Lin T.Y., Marino S., Fuller M.T. 2004. Testis-specific TAF homologs collaborate to control a tissue-specific transcription program. Development. 131, 5297–5308.

    Article  CAS  PubMed  Google Scholar 

  26. Metcalf C.E., Wassarman D.A. 2007. Nucleolar colocalization of TAF1 and testis-specific TAFs during Drosophila spermatogenesis. Dev. Dynam. 236, 2836–2843.

    Article  CAS  Google Scholar 

  27. Brand A.H., Perrimon N. 1993. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 118, 401–415.

    CAS  PubMed  Google Scholar 

  28. Groth A.C., Fish M., Nusse R., Calos M.P. 2004. Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics. 166, 1775–1782.

    Article  CAS  PubMed  Google Scholar 

  29. Gavis E.R., Curtis D., Lehmann R. 1996. Identification of cis-acting sequences that control nanos RNA localization. Dev. Biol. 176, 36–50.

    Article  CAS  PubMed  Google Scholar 

  30. Forrest K.M., Clark I.E., Jain R.A., Gavis E.R. 2004. Temporal complexity within a translational control element in the nanos mRNA. Development. 131, 5849–5857.

    Article  CAS  PubMed  Google Scholar 

  31. Siegal M.L., Hartl D.L. 1996. Transgene coplacement and high efficiency site-specific recombination with the Cre/loxP system in Drosophila. Genetics. 144, 715–726.

    CAS  PubMed  Google Scholar 

  32. van Steensel B., Henikoff S. 2000. Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nature Biotechnol. 18, 424–428.

    Article  Google Scholar 

  33. Struhl G., Basler K. 1993. Organizing activity of wingless protein in Drosophila. Cell. 72, 527–540.

    Article  CAS  PubMed  Google Scholar 

  34. Bischof J., Maeda R.K., Hediger M., Karch F., Basler K. 2007. An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc. Natl. Acad. Sci. U. S. A. 104, 3312–3317.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Markstein M., Pitsouli C., Villalta C., Celniker S.E., Perrimon N. 2008. Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nature Genet. 40, 476–483.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Laktionov P.P., Maksimov D.A., Andreyeva E.N., Shloma V.V., Belyakin S.N. 2013. A genetic system for somatic and germinal lineage tracing in the Drosophila melanogaster gonads. Tsitologiya. 55, 185–189.

    CAS  Google Scholar 

  37. Greil F., Moorman C., van Steensel B. 2006. DamID: Mapping of in vivo protein-genome interactions using tethered DNA adenine methyltransferase. Methods Enzymol. 410, 342–359.

    Article  CAS  PubMed  Google Scholar 

  38. Yang I.V., Chen E., Hasseman J.P., Liang W., Frank B.C., Wang S., Sharov V., Saeed A.I., White J., Li J., Lee N.H., Yeatman T.J., Quackenbush J. 2002. Within the fold: Assessing differential expression measures and reproducibility in microarray assays. Genome Biol. 3, res. 0062.

    Google Scholar 

  39. de Wit E., Greil F., van Steensel B. 2005. Genome-wide HP1 binding in Drosophila: Developmental plasticity and genomic targeting signals. Genome Res. 15, 1265–1273.

    Article  PubMed  Google Scholar 

  40. Greil F., de Wit E., Bussemaker H.J., van Steensel B. 2007. HP1 controls genomic targeting of four novel heterochromatin proteins in Drosophila. EMBO J. 26, 741–751.

    Article  CAS  PubMed  Google Scholar 

  41. Greil F., van der Kraan I., Delrow J., Smothers J.F., de Wit E., Bussemaker H.J., van Driel R., Henikoff S., van Steensel B. 2003. Distinct HP1 and Su(var)3–9 complexes bind to sets of developmentally coexpressed genes depending on chromosomal location. Genes Dev. 17, 2825–2838.

    Article  CAS  PubMed  Google Scholar 

  42. Filion G.J., van Bemmel J.G., Braunschweig U., Talhout W., Kind J., Ward L.D., Brugman W., de Castro I.J., Kerkhoven R.M., Bussemaker H.J., van Steensel B. 2010. Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell. 143, 212–224.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Liu W., Hou S.X. 2008. Genetic tools used for cell lineage tracing and gene manipulation in Drosophila germline stem cells. Methods Mol. Biol. 450, 61–70.

    Article  CAS  PubMed  Google Scholar 

  44. Lee T., Luo L. 2001. Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci. 24, 251–254.

    Article  CAS  PubMed  Google Scholar 

  45. Chou T.B., Perrimon N. 1992. Use of a yeast site-specific recombinase to produce female germline chimeras in Drosophila. Genetics. 131, 643–653.

    CAS  PubMed  Google Scholar 

  46. Davis M.W., Morton J.J., Carroll D., Jorgensen E.M. 2008. Gene activation using FLP recombinase in C. elegans. PLoS Genet. 4, e1000028.

    Article  Google Scholar 

  47. Evans C.J., Olson J.M., Ngo K.T., Kim E., Lee N.E., Kuoy E., Patananan A.N., Sitz D., Tran P., Do M.T., Yackle K., Cespedes A., Hartenstein V., Call G.B., Banerjee U. 2009. G-TRACE: Rapid Gal4-based cell lineage analysis in Drosophila. Nature Methods. 6, 603–605.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Duchow H.K., Brechbiel J.L., Chatterjee S., Gavis E.R. 2005. The nanos translational control element represses translation in somatic cells by a Bearded box-like motif. Dev. Biol. 282, 207–217.

    Article  CAS  PubMed  Google Scholar 

  49. Luo S.D., Shi G.W., Baker B.S. 2011. Direct targets of the D. melanogaster DSXF protein and the evolution of sexual development. Development. 138, 2761–2771.

    Article  CAS  PubMed  Google Scholar 

  50. Belyakin S.N., Babenko V.N., Maksimov D.A., Shloma V.V., Kvon E.Z., Belyaeva E.S., Zhimulev I.F. 2010. Gene density profile reveals the marking of late replicated domains in the Drosophila melanogaster genome. Chromosoma. 119, 589–600.

    Article  PubMed  Google Scholar 

  51. Zeeberg B.R., Feng W., Wang G., Wang M.D., Fojo A.T., Sunshine M., Narasimhan S., Kane D.W., Reinhold W.C., Lababidi S., Bussey K.J., Riss J., Barrett J.C., Weinstein J.N. 2003. GoMiner: A resource for biological interpretation of genomic and proteomic data. Genome Biol. 4, R28.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Kalmykova A.I., Nurminsky D.I., Ryzhov D.V., Shevelyov Y.Y. 2005. Regulated chromatin domain comprising cluster of co-expressed genes in Drosophila melanogaster. Nucleic Acids Res. 33, 1435–1444.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Belyakin S.N., Christophides G.K., Alekseyenko A.A., Kriventseva E.V., Belyaeva E.S., Nanayev R.A., Makunin I.V., Kafatos F.C., Zhimulev I.F. 2005. Genomic analysis of Drosophila chromosome underreplication reveals a link between replication control and transcriptional territories. Proc. Natl. Acad. Sci. U. S. A. 102, 8269–8274.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Gonczy P., Matunis E., DiNardo S. 1997. bag-of-marbles and benign gonial cell neoplasm act in the germline to restrict proliferation during Drosophila spermatogenesis. Development. 124, 4361–4371.

    CAS  PubMed  Google Scholar 

  55. Wilczynski B., Furlong E.E. 2010. Challenges for modeling global gene regulatory networks during development: Insights from Drosophila. Dev. Biol. 340, 161–169.

    Article  CAS  PubMed  Google Scholar 

  56. Martinez-Balbas M.A., Tsukiyama T., Gdula D., Wu C. 1998. Drosophila NURF-55, a WD repeat protein involved in histone metabolism. Proc. Natl. Acad. Sci. U. S. A. 95, 132–137.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Schwartz Y.B., Pirrotta V. 2007. Polycomb silencing mechanisms and the management of genomic programmes. Nature Rev. Genet. 8, 9–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Belyakin.

Additional information

Original Russian Text © P.P. Laktionov, H. White-Cooper, D.A. Maksimov, S.N. Belyakin, 2014, published in Molekulyarnaya Biologiya, 2014, Vol. 48, No. 1, pp. 153–165.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laktionov, P.P., White-Cooper, H., Maksimov, D.A. et al. Transcription factor Comr acts as a direct activator in the genetic program controlling spermatogenesis in D. melanogaster . Mol Biol 48, 130–140 (2014). https://doi.org/10.1134/S0026893314010087

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893314010087

Keywords

Navigation