Skip to main content
Log in

Genetic diversity of starch synthesis genes of Chinese maize (Zea mays L.) with SNAPs

  • Genomics. Transcriptomics. Proteomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Analysis of genetic diversity in maize populations is a very important step for understanding genetic structure and subsequently for genetic manipulations in maize breeding. Sh2, Bt2, Sh1, Wx1, Ae1 and Su1 involved in starch biosynthesis are important genes associated with yield and quality traits in maize breeding programs. In this study, genetic diversity of these six genes in 67 Chinese elite maize inbred lines was measured using single-nucleotide amplified polymorphisms (SNAPs). The results indicated that the number of haplotypes of each gene and population was far less than theoretically expected 2n (n = the number of the SNAPs). Phenetic clustering analysis showed that the kernel phonetic (semi-) dent and (semi-) flint lines were belong to distinct subclusters based on haplotypes of SNAPs, with a few exceptions. In addition, the genetic origin of these maize inbred lines was associated with the clustered subgroups. Intragenic linkage disequilibrium (LD) was observed in some of the SNAPs in Bt2, Sh1 and Ae1, while intergenic LD was observed in some of the SNAPs in Bt2, Sh1 and Su1. Association study of kernel phenotypes and SNAP haplotypes showed that the (semi-) dent and (semi-) flint lines had the common haplotype of TA and CC at two SNAP sites in Bt2 (Bt2-2 and Bt2-5), respectively. Two haplotypes of ATGT and GTGC at four SNAP sites in Sh1 (Sh1-2, Sh1-3, Sh1-4 and Sh1-5) were associated with temperature and tropical origin of the maize inbred lines, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Warbutton M.L., Ribaut J.M., Franco J., Crossa J., Dubreuil P., Betran F.J. 2005. Genetic characterization of 218 elite CIMMYT maize inbred lines using RFLP markers. Euphytica. 142, 97–106.

    Article  Google Scholar 

  2. Li Y., Shi Y.S., Song Y.C., Du J.Y., Tuberosa R., Wang T.Y. 2004. Analysis of genetic diversity in maize inbred lines based on AFLP markers. Maydica. 49, 89–95.

    Google Scholar 

  3. Shieh G.J., Thseng S. 2002. Genetic diversity of Tainan-white maize inbred lines and prediction of single cross hybrid performance using RAPD markers. Euphytica. 124, 307–313.

    Article  CAS  Google Scholar 

  4. Yu Y., Wang R., Shi Y., Song Y., Wand T., Li Y. 2007. Genetic diversity and structure of the core collection for maize inbred lines in China. Maydica. 52, 181–194.

    Google Scholar 

  5. Suga H., Gale L.R., Kistler H.C. 2004. Development of VNTR markers for two Fusarium graminearum clade species. Mol. Ecol. Notes. 4, 468–470.

    Article  CAS  Google Scholar 

  6. Remington D.L., Thornsberry J.M., Matsuoka Y., Wilson L.M., Whitt S.R., Doebley J., Kresovich S., Goodman M.M., Buckler E.S. 2001. Structure of linkage disequilibrium and phenotypic association in the maize genome. Proc. Natl. Acad. Sci. 98, 11479–11484.

    Article  CAS  PubMed  Google Scholar 

  7. Edwards J.D., Janda J., Sweeney M.T., Gaikwad A.B., Liu B., Leung H., Galbraith D.W. 2008. Development and evaluation of a high-throughput, low-cost genotyping platform based on oligonucleotide microarrays in rice. Plant Methods. 4, 1–13.

    Article  Google Scholar 

  8. Braqard C., Verdier V., Maraite H. 1995. Genetic diversity among Xanthomonas campestris strains pathogenic for small grains. Appl. Environ. Microbiol. 61, 1020–1026.

    Google Scholar 

  9. Cho R.J., Mindrinos M., Richards D.R., Sapolsky R.J., Anderson M., Drenkard E., Dewdney L., Reuber T.L., Stammers M., Federspiel N., et al. 1999. Genome-wide mapping with biallelic markers in Arabidopsis thaliana. Nature Genet. 23, 203–207.

    Article  CAS  PubMed  Google Scholar 

  10. Tenaillon M.I., Sawkins M.C., Anderson L.K., Stack S.M., Doebley J., Gaut B.S. 2001. Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc. Natl. Acad. Sci. 98, 9161–9166.

    Article  CAS  PubMed  Google Scholar 

  11. Latha R., Rubia L., Bennet J., Swaminathan M.S. 2004. Allele mining for stress tolerance genes in Oryza species and related germplasm. Mol. Biotechnol. 27, 101–108.

    Article  CAS  PubMed  Google Scholar 

  12. Whitt S.R, Wilson L.M., Tenaillon M.I., Gaut B.S., Buckler E.S. 2002. Genetic diversity and selection in the maize starch pathway. Proc. Natl. Acad. Sci. 99, 12959–12962.

    Article  CAS  PubMed  Google Scholar 

  13. Wilson L.M., Whitt S.R., Ibanez A.M., Rocheford T.R., Goodman M.M. 2004. Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell. 16, 2719–2733.

    Article  CAS  PubMed  Google Scholar 

  14. Chourey P.S., Nelson O.E. 1976. The enzymatic deficiency conditioned by the shrunken-1 mutations in maize. Biochem. Genet. 14, 1041–1055.

    Article  CAS  PubMed  Google Scholar 

  15. Hannah L.C., Shaw J.R., Giroux M.J., Reyss A., Prioul J.L., Bae J., Lee J.Y. 2001. Maize genes encoding the small subunit of ADP-glucose pyrophosphorylase. Plant Physiol. 127, 173–183.

    Article  CAS  PubMed  Google Scholar 

  16. Shure M., Wessler S., Fedoroff N. 1983. Molecular identification and isolation of the Waxy locus in maize. Cell. 35, 225–233.

    Article  CAS  PubMed  Google Scholar 

  17. Kim K.N., Fisher D.K., Gao M., Guiltinan M.J. 1998. Molecular cloning and characterization of the amyloseextender gene encoding starch branching enzyme IIB in maize. Plant Mol. Biol. 38, 945–956.

    Article  CAS  PubMed  Google Scholar 

  18. James M.G., Robertson D.S., Myers A.M. 1995. Characterization of the maize gene sugaryl, a determinant of starch composition in kernels. Plant Cell. 7, 417–429.

    Article  CAS  PubMed  Google Scholar 

  19. Shin J.H., Kwon S.J., Lee J.K., Min H.K., Kim N.S. 2006. Genetic diversity of maize kernel starch-synthesis gene with SNAPs. Genome. 49, 1287–1296.

    Article  CAS  PubMed  Google Scholar 

  20. Greene B., Walko R., Hake S. 1994. Mutator insertions in an intron of maize knotted1 gene result in dominant suppressible mutations. Genetics. 138, 1275–1285.

    CAS  PubMed  Google Scholar 

  21. Rohlf F.J. 2000. NTSYS-pc: Numerical taxonomy and multivariate analysis system, version 2.1. N.Y.: Exeter.

  22. Nei M., Li W. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. 76, 5269–5273.

    Article  CAS  PubMed  Google Scholar 

  23. Rozas J., Rozas R. 1999. DnaSP version3: An integrated program for molecular evolution analysis. Bioinformatics. 15, 174–175.

    Article  CAS  PubMed  Google Scholar 

  24. Nelson O., Pan D. 1995. Starch synthesis in maize endosperms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 475–496.

    Article  CAS  Google Scholar 

  25. Myers A.M., Morell M.K., James M.G., Ball S.G. 2000. Recent progress toward understanding biosynthesis of the arnylopectin crystal. Plant Physiol. 122, 989–997.

    Article  CAS  PubMed  Google Scholar 

  26. Matsuoka Y., Vigouroux Y., Goodman M.M., Jesus S.G., Buckle E., Doebley J. 2002. A single domestication for maize shown by multilocus microsatellite genotyping. Proc. Natl. Acad. Sci. 99, 6080–6084.

    Article  CAS  PubMed  Google Scholar 

  27. Wright S.I., Bi I.V., Schroeder S.G., Yamasaki M., Doebley J.F., McMullen M.D., Gaut B.S. 2005. The effects of artificial selection on the maize genome. Science. 308, 1310–1314.

    Article  CAS  PubMed  Google Scholar 

  28. Gupta P.K., Rustgi S., Kulwal P.L. 2005. Linkage disequilibrium and association studies in higher plants: Recent status and future prospects. Plant Mol. Biol. 57, 461–485.

    Article  CAS  PubMed  Google Scholar 

  29. Reif J.C., Hallauer A.R., Melchinger A.E. 2005. Heterosis and heterotic patterns in maize. Maydica. 50, 215–223.

    Google Scholar 

  30. Wan Y.S., Watanabe J.A., Yi S.S., Htaik T., Win K., Yamanaka S., Nakamura I., Watanabe K.N. 2005. Assessment of genetic diversity among the major Myanmar banana landraces. Breeding Sci. 55, 365–369.

    Article  Google Scholar 

  31. Ohm M.S., Kazuyuki D., Khin A., Kenji I., Atsushi Y. 2006. Genetic diversity of Myanmar rice cultivars detected by DNA markers. J. Fac. Agr. Kyushu Univ. 51, 181–187.

    Google Scholar 

  32. Melani M.D., Carena M.J. 2005. Alternative maize heterotic patterns for the Northern Corn Belt. Crop Sci. 45, 2186–2194.

    Article  Google Scholar 

  33. Liu J.L. 2002. Maize Breeding Science, 2nd ed. Beijing: Chinese Agriculture Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. -B. Li.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, W.B., Zheng, L.L., Zhang, Z.F. et al. Genetic diversity of starch synthesis genes of Chinese maize (Zea mays L.) with SNAPs. Mol Biol 43, 937–945 (2009). https://doi.org/10.1134/S0026893309060041

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893309060041

Key words

Navigation