Skip to main content
Log in

Compartmentalization of Spo11p in vegetative cells of yeast Saccharomyces cerevisiae

  • Cell Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Homologous recombination is initiated in meiotic eukaryotic cells at DNA double-strand breaks, which are generated by several proteins, Spo11p playing a key role. The protein products of SPO11 orthologs are highly conserved, are found in most eukaryotes from plants to human, and are structurally similar to subunit A of archaeal DNA topoisomerase VI. Saccharomyces cerevisiae SPO11 is expressed in meiotic prophase I. Spo11p acts as topoisomerase II and is presumably active as a dimer. Experimental data on Spo11p compartmentalization in vegetative yeast cells are unavailable. The SPO11 coding region and its fragments were fused in frame with the egfp reporter and expressed in vegetative yeast cells. The Spo11p-EGFP fusion was localized in the nucleus, while cytoplasmic localization was observed for Spo11Δ-EGFP devoid of the 25 N-terminal residues. N-terminal Spo11p region 7–25 fused with EGFP ensured the nuclear targeting of the reporter protein and was assumed to harbor the nuclear localization signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Keeney S., Neale M.J. 2006. Initiation of meiotic recombination by formation of DNA double-strand breaks: Mechanism and regulation. Biochem. Soc. Trans. 34, 523–525.

    Article  PubMed  CAS  Google Scholar 

  2. Li J., Hooker G.W., Roeder G.S. 2006. Saccharomyces cerevisiae Mer2, Mei4 and Rec114 form a complex required for meiotic double-strand break formation. Genetics. 173, 1969–1981.

    Article  PubMed  CAS  Google Scholar 

  3. Bergerat A., Gadelle D., Forterre P. 1994. Purification of a DNA topoisomerase II from the hyperthermophilic archaeon Sulfolobus shibatae: A thermostable enzyme with both bacterial and eucaryal features. J. Biol. Chem. 269, 27663–27669.

    PubMed  CAS  Google Scholar 

  4. Bergerat A., de Massy B., Gadelle D., Varoutas P.C., Nicolas A., Forterre P. 1997. An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature. 386, 414–417.

    Article  PubMed  CAS  Google Scholar 

  5. Romanienko P.J., Camerini-Otero R.D. 1999. Cloning, characterization, and localization of mouse and human SPO11. Genomics. 61, 156–169.

    Article  PubMed  CAS  Google Scholar 

  6. Romanienko P.J., Camerini-Otero R.D. 2000. The mouse SPO11 gene is required for meiotic chromosome synapsis. Mol. Cell. 6, 975–987.

    Article  PubMed  CAS  Google Scholar 

  7. Hartung F., Puchta H. 2001. Molecular characterization of two paralogous SPO11 homologues in Arabidopsis thaliana. Gene. 271, 81–86.

    Article  PubMed  CAS  Google Scholar 

  8. Stacey N.J., Kuromori T., Azumi Y., Roberts G., Breuer C., Wada T., Maxwell A., Roberts K., Sugimoto-Shirasu K. 2006. Arabidopsis SPO11-2 functions with SPO11-1 in meiotic recombination. Plant J. 48, 206–216.

    Article  PubMed  CAS  Google Scholar 

  9. Nichols M.D., DeAngelis K., Keck J.L., Berger J.M. 1999. Structure and function of an archael topoisomerase VI subunit with homology to the meiotic recombination factor Spo11. EMBO J. 18, 6177–6188.

    Article  PubMed  CAS  Google Scholar 

  10. Wu H., Gao J., Sharif W.D., Davidson M.K., Wahls W.P. 2004. Purification, folding, and characterization of Rec12 (Spo11) meiotic recombinase of fission yeast. Protein Expr. Purif. 38, 136–144.

    Article  PubMed  CAS  Google Scholar 

  11. Sasanuma H., Murakami H., Fukuda T., Shibata T., Nicolas A., Ohta K. 2007. Meiotic association between Spo11 regulated by Rec102, Rec104 and Rec114. Nucleic Acids Res. 35, 1119–1133.

    Article  PubMed  CAS  Google Scholar 

  12. Storlazzi A., Tesse S., Gargano S., James F., Kleckner N., Zickler D. 2003. Meiotic double-strand breaks at the interface of chromosome movement, chromosome remodeling, and reductional division. Genes Dev. 17, 2675–2687.

    Article  PubMed  CAS  Google Scholar 

  13. Jain M., Tyagi A.K., Khurana J.P. 2006. Overexpression of putative topoisomerase 6 genes from rice confers stress tolerance in transgenic Arabidopsis plants. FEBS J. 273, 5245–5260.

    Article  PubMed  CAS  Google Scholar 

  14. Champoux J.J. 2001. DNA topoisomerases: Structure, function, and mechanism. Annu. Rev. Biochem. 70, 369–413.

    Article  PubMed  CAS  Google Scholar 

  15. Maniatis, T., Fritsch, E.F., Sambrook, J. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press.

    Google Scholar 

  16. Soni R., Carmichael J.P., Murray J.A. 1993. Parameters affecting lithium acetate-mediated transformation of Saccharomyces cerevisiae and development of a rapid and simplified procedure. Curr. Genet. 24, 455–459.

    Article  PubMed  CAS  Google Scholar 

  17. Komakhin R.A., Komakhina V.V., Zhuchenko A.A. 2007. Production of genetic constructs containing E. coli recA gene for inducing recombination in plants. S-kh. Biol. 3, 25–32.

    Google Scholar 

  18. Bruschi C.V., Esposito M.S. 1983. Enhancement of spontaneous mitotic recombination by the meiotic mutant SPO11-1 in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 80, 7566–7570.

    Article  PubMed  CAS  Google Scholar 

  19. Klapholz S., Waddell C.S., Esposito R.E. 1985. The role of the SPO11 gene in meiotic recombination in yeast. Genetics. 110, 187–216.

    PubMed  CAS  Google Scholar 

  20. Peciña A., Smith K.N., Mézard C., Murakami H., Ohta K., Nicolas A. 2002. Targeted stimulation of meiotic recombination. Cell. 111, 173–184.

    Article  PubMed  Google Scholar 

  21. Shulga N., Roberts P., Gu Z., Spitz L., Tabb M.M., Nomura M., Goldfarb D.S. 1996. In vivo nuclear transport kinetics in Saccharomyces cerevisiae: A role for heat shock protein 70 during targeting and translocation. J. Cell. Biol. 135, 329–339.

    Article  PubMed  CAS  Google Scholar 

  22. Alberts B., Bray D., Lewis J., Raff M., Roberts K., Watson J.D. 1994. Molecular Biology of the Cell. N.Y.: Garland.

    Google Scholar 

  23. Moreland R.B., Langevin G.L., Singer R.H., Garcea R.L., Hereford L.M. 1987. Amino acid sequences that determine the nuclear localization of yeast histone 2B. Mol. Cell. Biol. 7, 4048–4057.

    PubMed  CAS  Google Scholar 

  24. Park K.J., Kanehisa M. 2003. Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs. Bioinformatics. 19, 1656–1663.

    Article  PubMed  CAS  Google Scholar 

  25. Gadelle D., File J., Buhler C., Forterre P. 2003. Phylogenomics of type II DNA topoisomerases. BioEssays. 25, 232–242.

    Article  PubMed  CAS  Google Scholar 

  26. Hayashi A., Ogawa H., Kohno K., Gasser S.M., Hiraoka Y. 1998. Meiotic behaviors of chromosomes and microtubules in budding yeast: Relocalization of centromeres and telomeres during meiotic prophase. Genes Cells. 3, 587–601.

    Article  PubMed  CAS  Google Scholar 

  27. Hartung F., Puchta H. 2007. Molecular characterization of homologues of both subunits A (SPO11) and B of the archaebacterial topoisomerase 6 in plants. Gene. 271, 81–86.

    Article  Google Scholar 

  28. McKim K.S., Hayashi-Hagihara A. 1998. mei-W68 in Drosophila melanogaster encodes a Spo11 homolog: Evidence that the mechanism for initiating meiotic recombination is conserved. Genes Dev. 12, 2932–2942.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Komakhin.

Additional information

Original Russian Text © R.A. Komakhin, V.V. Komakhina, 2008, published in Molekulyarnaya Biologiya, 2008, Vol. 42, No. 3, pp. 494–500.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komakhin, R.A., Komakhina, V.V. Compartmentalization of Spo11p in vegetative cells of yeast Saccharomyces cerevisiae . Mol Biol 42, 436–441 (2008). https://doi.org/10.1134/S0026893308030126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893308030126

Key words

Navigation