Skip to main content
Log in

Intron and exon length variation in Arabidopsis, rice, nematode, and human

  • Mathematical and Systems Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

An Erratum to this article was published on 10 August 2008

Abstract

As determined by computer sequence analysis, the average exon length in Arabidopsis thaliana, Oryza sativa, Caenorhabditis elegans, and Homo sapiens genes decreases with an increasing number of introns. In A. thaliana and O. sativa, variations in intron and exon lengths with an increasing number of introns are highly correlated. Linear correlation is observed between the total exon length and the number of introns, while the gene length increases in proportion to the number of introns. In human, the average intron and gene lengths depended on the gene density in DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wheeler D.L., Barrett T., Benson D.A., et al. 2007. The molecular biology database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 35, D5–D12.

    Article  CAS  PubMed  Google Scholar 

  2. Naora H., Deacon N.J. 1982. Relationship between the total size of exons and introns in protein-coding genes of higher eukaryotes. Proc. Natl. Acad. Sci. USA. 79. 6196–6200.

    Article  CAS  PubMed  Google Scholar 

  3. Hawkins J.D. 1988. A survey on intron and exon lengths. Nucleic Acids Res. 16. 9893–9908.

    Article  CAS  PubMed  Google Scholar 

  4. Smith M.W. 1988. Structure of vertebrate genes: A statistical analysis implicating selection. J. Mol. Evol. 27, 45–55.

    Article  CAS  PubMed  Google Scholar 

  5. Goffeau A., Barrell B.G., Bussey H., et al. 1996. Life with 6000 genes. Science. 274, 546–547.

    Article  CAS  PubMed  Google Scholar 

  6. Spingola M., Grate L., Haussler D.A. 1999. Genomewide bioinformatic and molecular analysis of intron in S. cerevisiae. RNA. 5, 221–234.

    Article  CAS  PubMed  Google Scholar 

  7. The Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 408, 796–813.

    Article  Google Scholar 

  8. The Caenorhabditis elegans Sequencing Consortium. 1998. Genome sequence of the nematode Caenorhabditis elegans: A platform for investigating biology. Science. 282, 2012–2018.

    Article  Google Scholar 

  9. Adams M.D., Celiker S.E., Holit R.A., et al., 2000. The genome sequence of Drosophila melanogaster. Science. 287, 2185–2195.

    Article  PubMed  Google Scholar 

  10. Venter J.C., Adams M.D., Myers E.W., et al., 2001. The sequence of the human genome. Science. 291, 1304–1351.

    Article  CAS  PubMed  Google Scholar 

  11. Deutsch M., Long M. 1999. Intron-exon structures of eukaryotic model organisms. Nucleic Acids Res. 27, 3219–3228.

    Article  CAS  PubMed  Google Scholar 

  12. Sakharkar M.K., Chow V.T.K., Kangueane P. 2004. Distributions of exons and introns in the human genome. In Silico Biol. 4, 0032.

    Google Scholar 

  13. Schisler N.J., Palmer J.D. 2000. The IDB and IEDB: Intron sequence and evolution databases. Nucleic Acids Res. 28, 181–184.

    Article  CAS  PubMed  Google Scholar 

  14. Bultrini E., Pizzi E., Giudice P., Frontani C. 2003. Pentamer vocabularies characterizing introns and intron-like intergenic tracts from Caenorhabditis elegans and Drosophila melanogaster. Gene. 304, 183–192.

    Article  CAS  PubMed  Google Scholar 

  15. Comeron J.M., Kreitman M. 2000. The correlation between intron length and recombination in Drosophila: Dynamic equilibrium between mutational and selective forces. Genetics. 156, 1175–1190.

    CAS  PubMed  Google Scholar 

  16. Cho S., Jin S-W., Cohen A., Ellis R.E. 2004. A phylogeny of Caenorhabditis reveals frequent loss of introns during nematode evolution. Genet. Res. 14, 1207–1220.

    Article  CAS  Google Scholar 

  17. Coghlan A., Wolfe K.H. 2004. Origins of recently gained introns in Caenorhabditis. Proc. Natl. Acad. Sci. USA. 101, 11 362–11 367.

    Article  CAS  Google Scholar 

  18. Wendel J.F., Cronn R.C., Alvarez I., Liu B., Small R.L., Senchina D.S. 2002. Intron size and genome size in plants. Mol. Biol. Evol. 19, 2346–2352.

    CAS  PubMed  Google Scholar 

  19. Katinka M.D., Duprat S., Cornillot E., et al. 2001. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature. 414, 450–453.

    Article  CAS  PubMed  Google Scholar 

  20. Loftus B.J., Fung E., Roncaglia P., et al. 2005. The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science. 307, 1321–1324.

    Article  PubMed  Google Scholar 

  21. Zhang M.Q. 1998. Statistical features of human exons and their flanking regions. Human Mol. Genet. 7, 919–932.

    Article  CAS  Google Scholar 

  22. Duret L., Mouchiroud D., Gautier C. 1995. Statistical analysis of vertebrate sequences reveals that long genes are scarce in GC-rich isochores. J. Mol. Evol., 40, 308–317.

    Article  CAS  PubMed  Google Scholar 

  23. Bernardi G. 2001. Misunderstandings about isochores. Part 1. Gene. 276, 3–13.

    Article  CAS  PubMed  Google Scholar 

  24. Carels N., Bernardi G. 2000. Two classes of genes in plants. Genetics. 154, 1819–1825.

    CAS  PubMed  Google Scholar 

  25. Oliver J.L., Marin A. 1996. A relationship between GC content and coding-sequence length. J. Mol. Evol. 43, 216–223.

    Article  CAS  PubMed  Google Scholar 

  26. Castillo-Davis C.I., Mekhedov S.L., Hart D.L., Koonin E.V., Kondrashov F.A. 2002. Selection for short introns in highly expressed genes. Nature Genet. 31, 415–418.

    CAS  PubMed  Google Scholar 

  27. Clark F., Thanaraj T.A. 2002. Categorization and characterization of transcript-confirmed constitutively and alternatively spliced introns and exons from human. Hum. Mol. Genet. 11, 451–464.

    Article  CAS  PubMed  Google Scholar 

  28. Bell M.V., Cowper A.E., Lefrane V.-P., Bell J.I., Sereaton G.R. 1998. Influence of intron length on alternative splicing of CD44. Mol. Cell. Biol., 18, 5930–5941.

    CAS  PubMed  Google Scholar 

  29. Comeron J.M. 2004. Selective and mutational patterns associated with gene expression in humans: Influences on synonymous composition and intron presence. Genetics. 167, 1293–1304.

    Article  CAS  PubMed  Google Scholar 

  30. Nott A., Meislin S.H., Moore M.J. 2003. A quantitative analysis of intron effect on mammalian gene expression. RNA. 9, 607–617.

    Article  CAS  PubMed  Google Scholar 

  31. Das D., Clark T.A., Schweitzer A., et al. 2007. A correlation with exon expression approach to identify cis-regulatory elements for tissue-specific alternative splicing. Nucleic Acids Res. 35, 4845–4857.

    Article  CAS  PubMed  Google Scholar 

  32. Ren X.-Y., Vorst O., Fiers M., Stiekema W.J., Nap J.-P. 2006. In plants, highly expressed genes are the least compact. Trends Genet. 22, 528–532.

    Article  CAS  PubMed  Google Scholar 

  33. Chung B.Y.W., Simons C., Furth A.E., et al. 2006. Effect of 5′UTR introns on gene expression in Arabidopsis thaliana. BMS Genomics. 7, 120–133.

    Article  Google Scholar 

  34. Coulombe-Huntington J., Majewski J. 2007. Characterization of intron loss events in mammals. Genome Res. 17, 23–32.

    Article  CAS  PubMed  Google Scholar 

  35. Liu M., Walch H., Wu S., Grigoriev A. 2005. Significant expansion of exon-bordering protein domains during animal proteome evolution. Nucleic Acids Res. 33, 95–105.

    Article  CAS  PubMed  Google Scholar 

  36. Bon E., Casaregola S., Blandin G., et al. 2003. Molecular evolution of eukaryotic genomes: Haemiascomycetous yeast spliceosomal introns. Nucleic Acids Res. 31, 1121–1135.

    Article  CAS  PubMed  Google Scholar 

  37. Carmel L., Wolf Y.I., Rogozin I.B., Koonin E.V. 2007. Three distinct modes of intron dynamics in the evolution of eukaryotes. Genome Res. 17, 1034–1044.

    Article  CAS  PubMed  Google Scholar 

  38. Roy S.W., Penny D. 2007. Intron length distributions and gene prediction. Nucleic Acids Res. 35, 4737–4742.

    Article  CAS  PubMed  Google Scholar 

  39. Stamm S., Ben-Ari S., Rafalska I., Tang Y., Zang Z., Toiber D., Thanaraj T.A., Soreq H. 2005. Function of alternative splicing. Gene. 344, 1–20.

    Article  CAS  PubMed  Google Scholar 

  40. Malko D.B., Makeev V.J., Mironov A.A., Gelfand M.S. 2006. Evolution of exon-intron structure and alternative splicing in fruit flies and malarial mosquito genomes. Genome Res. 16, 505–509.

    Article  CAS  PubMed  Google Scholar 

  41. Marcucci R., Baralle F.E., Romano M. 2007. Complex splicing control of the human thrombopoietin gene by intronic G runs. Nucleic Acids Res. 35, 132–142.

    Article  CAS  PubMed  Google Scholar 

  42. Kim E., Magen A., Ast G. 2007. Different levels of alternative splicing among eukaryotes. Nucleic Acids Res. 35, 125–131.

    Article  CAS  PubMed  Google Scholar 

  43. Sheth N., Roca X., Hastings M.L., Roeder T., Krainer A.R., Sachidanandam R. 2006. Comprehensive splice-state analysis using comparative genomics. Nucleic Acids Res. 34, 3955–3967.

    Article  CAS  PubMed  Google Scholar 

  44. Singh N.N., Singh R.N., Androphy E.J. 2007. Iodulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes. Nucleic Acids Res. 35, 371–389.

    Article  CAS  PubMed  Google Scholar 

  45. Lakin G.F. 1990. Biometriya (Biometrics). Moscow: Vysshaya Shkola.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Ivashchenko.

Additional information

Original Russian Text © Sh.A. Atambayeva, V.A. Khailenko, A.T. Ivashchenko, 2008, published in Molekulyarnaya Biologiya, 2008, Vol. 42, No. 2, pp. 352–361.

An erratum to this article can be found online at http://dx.doi.org/10.1134/S0026893308040237.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atambayeva, S.A., Khailenko, V.A. & Ivashchenko, A.T. Intron and exon length variation in Arabidopsis, rice, nematode, and human. Mol Biol 42, 312–320 (2008). https://doi.org/10.1134/S0026893308020180

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893308020180

Key words

Navigation