Skip to main content
Log in

Folding of the firefly luciferase polypeptide chain with the immobilized C terminus

  • Cell Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Refolding of firefly Photinus pyralis luciferase from a denatured state is a slow process; its rate and productivity depend on molecular chaperones of the Hsp70 family. In contrast, cotranslational folding of luciferase is fast and productive in the absence of chaperones. During cotranslational folding, the C termini of polypeptides are associated with ribosomes, massive particles. The question arises as to whether C-terminal immobilization on a massive particle promotes folding. To study this problem experimentally, luciferase was C-tagged with hexahistidine to allow its C-terminal immobilization of chelating Sepharose. Both immobilized and free chains of the urea-denatured enzyme refolded at the same rate. At the same time, immobilization led to a higher refolding yield owing to the prevention of intermolecular aggregation. Chaperones of the Hsp70 family promoted folding of both immobilized and free luciferase polypeptides. It was assumed that the high rate of cotranslational folding is not ensured by mere immobilization of the C terminus of the polypeptide, but is rather due to a favorable start conformation of the growing peptide in the peptidyltransferase center of the ribosome and/or the vectorial character of the folding, proceeding from the N to the C end during polypeptide synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Conti E., Francs N.P., Brick P. 1996. Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes. Structure. 4, 287–298.

    Article  PubMed  CAS  Google Scholar 

  2. Kolb V.A., Makeyev E.V., Spirin A.S. 1994. Folding of firefly luciferase during translation in a cell-free system. EMBO J. 13, 3631–3637.

    PubMed  CAS  Google Scholar 

  3. Kolb V.A., Makeyev E.V., Spirin A.S. 2000. Co-translational folding of an eukaryotic multidomain protein in a prokaryotic translation system. J. Biol. Chem. 275, 16,597–16,601.

    Article  CAS  Google Scholar 

  4. Frydman J., Nimmesgern E., Ohtsuka K., Hartl F.U. 1994. Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature. 370, 111–117.

    Article  PubMed  CAS  Google Scholar 

  5. Svetlov M.S., Kommer A., Kolb V.A., Spirin A.S. 2006. Effective cotranslational folding of firefly luciferase without chaperones of Hsp70 family. Protein Sci. 15, 242–247.

    Article  PubMed  CAS  Google Scholar 

  6. Herbst R., Schafer U., Seckler R. 1997. Equilibrium intermediates in the reversible unfolding of firefly (Photinus pyralis) luciferase. J. Biol. Chem. 272, 7099–7105.

    Article  PubMed  CAS  Google Scholar 

  7. Zako T., Deguchi H., Kitayama A., Ueda H., Nagamune T. 2000. Refolding of firefly luciferase immobilized on agarose beads. J. Biochem. (Tokyo). 127, 351–354.

    CAS  Google Scholar 

  8. Schroder H., Langer T., Hartl F.-U., Bukau B. 1993. DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J. 12, 4137–4144.

    PubMed  CAS  Google Scholar 

  9. Szabo A., Langer T., Schroder H., Flanagan J., Bukau B., Hartl F.U. 1994. The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system: DnaK, Dnal, and GrpE. Proc. Natl. Acad. Sci. USA. 91, 10,345–10,349.

    CAS  Google Scholar 

  10. Buchberger A., Schroder H., Hesterkamp T., Schonfeld H.-J., Bukau B. 1996. Substrate shuttling between the DnaK and GroEL systems indicates a chaperone network promoting protein folding. J. Mol. Biol. 261, 328–333.

    Article  PubMed  CAS  Google Scholar 

  11. Schagger H., von Jagow G. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368–379.

    Article  PubMed  CAS  Google Scholar 

  12. Hochuli E., Dobeli H., Schacher A. 1987. New metal chelate absorbent selective for proteins and peptides containing neighbouring histidine residues. J. Chromatogr. 411, 177–184.

    Article  PubMed  CAS  Google Scholar 

  13. Stempfer G., Holl-Neugebauer B., Rudolph R. 1996. Improved refolding of an immobilized fusion protein. Nature Biotechnol. 14, 329–334.

    Article  CAS  Google Scholar 

  14. Fedorov A.N., Baldwin T.O. 1997. Cotranslational protein folding. J. Biol. Chem. 272, 32,715–32,718.

    Article  CAS  Google Scholar 

  15. Spirin A.S. 1984. Cotranslational folding, compartmentalization, and modification of proteins. Mol. Biol. 18, 1445–1460.

    CAS  Google Scholar 

  16. Wright P.E., Dyson H.J., Lerner R.A. 1988. Conformation of peptide fragments of proteins in aqueous solution: Implications for initiation of protein folding. Biochemistry. 27, 7167–7175.

    Article  PubMed  CAS  Google Scholar 

  17. Teale J.M., Benjamin D.C. 1977. Antibody as immunological probe for studying refolding of bovine serum albumin. Refolding within each domain. J. Biol. Chem. 252, 4521–4526.

    PubMed  CAS  Google Scholar 

  18. Phillips D.C. 1967. The hen egg-white lysozyme molecule. Proc. Natl. Acad. Sci. USA. 57, 484–495.

    Article  CAS  Google Scholar 

  19. Lim V.I., Spirin A.S. 1999. Stereochemical analysis of ribosomal transpeptidation. Conformation of nascent peptide. J. Mol. Biol. 188, 565–574.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M.S. Svetlov, V.A. Kolb, A.S. Spirin, 2007, published in Molekulyarnaya Biologiya, 2007, Vol. 41, No. 1, pp. 96–102.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svetlov, M.S., Kolb, V.A. & Spirin, A.S. Folding of the firefly luciferase polypeptide chain with the immobilized C terminus. Mol Biol 41, 86–92 (2007). https://doi.org/10.1134/S0026893307010128

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893307010128

Key words

Navigation