Skip to main content
Log in

Ribosome-inactivating lectins of plants

  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

A heterogeneous group of plant proteins are capable of enzymatically inactivating ribosomes by depurination of the invariant adenine in the 28S rRNA. Some of these proteins are heterodimers, containing a lectin subunit joined to an enzymatic subunit via a disulfide bond. Ricin and abrin, which are among the most toxic substances known, belong to this class of heterodimeric proteins. The review focuses on the structure of plant heterodimeric ribosome-inactivating proteins, the way of their action on the ribosome, biosynthesis, intracellular trafficking, and potential applications in medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Olsnes S. 2004. The history of ricin, abrin and related toxins. Toxicon. 44, 361–370.

    Article  PubMed  CAS  Google Scholar 

  2. Lin J.-Y., Kao W.-Y., Tserng K.-Y., Chen C.-C., Tung T.-C. 1970. Effect of crystalline abrin on the biosynthesis of protein, RNA and DNA in experimental tumors. Cancer Res. 30, 2431–2433.

    PubMed  CAS  Google Scholar 

  3. Lin J.-Y., Liu K., Chen C.-C., Tung T.-C. 1971. Effect of crystalline ricin on the biosynthesis of protein, RNA and DNA in experimental tumors. Cancer Res. 31, 921–924.

    PubMed  CAS  Google Scholar 

  4. Girbes T., Ferreras J.M., Arias F.J., Stirpe F. 2004. Description, distribution, activity and phylogenetic relationship of ribosome-inactivating proteins in plants, fungi and bacteria. Mini Rev. Med. Chem. 4, 461–476.

    PubMed  CAS  Google Scholar 

  5. Fraser M.E., Chernaia M.M., Kozlov Y.V., James M.N. 1994. Crystal structure of the holotoxin from Shigella dysenteriae at 2.5 Å resolution. Nature Struct. Biol. 1, 59–64.

    Article  PubMed  CAS  Google Scholar 

  6. Lindberg A.A., Brown J.E., Stromberg N., Westling-Ryd M., Schultz J.E., Karlsson K.A. 1987. Identification of the carbohydrate receptor for Shiga toxin produced by Shigella dysenteriae type 1. J. Biol. Chem. 262, 1779–1785.

    PubMed  CAS  Google Scholar 

  7. Ling H., Boodhoo A., Hazes B., Cummings M.D., Armstrong G.D., Brunton J.L., Read R.J. 1998. Structure of the shiga-like toxin I B-pentamer complexed with an analogue of its receptor Gb3. Biochemistry. 37, 1777–1788.

    Article  PubMed  CAS  Google Scholar 

  8. Girbes T., Citores L., Iglesias R., Ferreras J.M., Munoz R., Rojo M.A., Arias F.J., Garcia J.R., Mendez E., Calonge M. 1993. Ebulin 1, a nontoxic novel type 2 ribosome-inactivating protein from Sambucus ebulus L. leaves. J. Biol. Chem. 268, 18,195–18,199.

    CAS  Google Scholar 

  9. Girbes T., Citores L., Ferreras J.M., Rojo M.A., Iglesias R., Munoz R., Arias F.J., Calonge M., Garcia J.R., Mendez E. 1993. Isolation and partial characterization of nigrin b, a non-toxic novel type 2 ribosome-inactivating protein from the bark of Sambucus nigra L. Plant Mol. Biol. 22, 1181–1186.

    Article  PubMed  CAS  Google Scholar 

  10. van Damme E.J., Barre A., Rouge P., van Leuven F., Peumans W.J. 1996. Characterization and molecular cloning of Sambucus nigra agglutinin V (nigrin b), a GalNAc-specific type-2 ribosome-inactivating protein from the bark of elderberry (Sambucus nigra). Eur. J. Biochem. 237, 505–513.

    Article  PubMed  Google Scholar 

  11. van Damme E.J., Hao Q., Charels D., Barre A., Rouge P., van Leuven F., Peumans W.J. 2000. Characterization and molecular cloning of two different type 2 ribosome-inactivating proteins from the monocotyledonous plant Polygonatum multiflorum. Eur. J. Biochem. 267, 2746–2759.

    Article  PubMed  Google Scholar 

  12. Roberts L.M., Lamb F.I., Pappin D.J., Lord J.M. 1985. The primary sequence of Ricinus communis agglutinin. Comparison with ricin. J. Biol. Chem. 260, 15,682–15,686.

    CAS  Google Scholar 

  13. Kourmanova A.G., Soudarkina O.J., Olsnes S., Kozlov J.V. 2004. Cloning and characterization of the genes encoding toxic lectins in mistletoe (Viscum album L). Eur. J. Biochem. 271, 2350–2360.

    Article  PubMed  CAS  Google Scholar 

  14. Lin Q., Chen Z.C., Antoniw J.F., White R.F. 1991. Isolation and characterization of a cDNA clone encoding the anti-viral protein from Phytolacca americana. Plant Mol. Biol. 17, 609–614.

    Article  PubMed  CAS  Google Scholar 

  15. Poyet J.L., Radom J., Hoeveler A. 1994. Isolation and characterization of a cDNA clone encoding the pokeweed antiviral protein II from Phytolacca americana and its expression in E. coli. FEBS Lett. 347, 268–272.

    Article  PubMed  CAS  Google Scholar 

  16. Kataoka J., Habuka N., Masuta C., Miyano M., Koiwai A. 1992. Isolation and analysis of a genomic clone encoding a pokeweed antiviral protein. Plant Mol. Biol. 20, 879–886.

    Article  PubMed  CAS  Google Scholar 

  17. Poyet J.L., Hoeveler A. 1997. cDNA cloning and expression of pokeweed antiviral protein from seeds in Escherichia coli and its inhibition of protein synthesis in vitro. FEBS Lett. 406, 97–100.

    Article  PubMed  CAS  Google Scholar 

  18. Montfort W., Villafranca J.E., Monzingo A.F., Ernst S.R., Katzin B., Rutenber E., Xuong N.H., Hamlin R., Robertus J.D. 1987. The three-dimensional structure of ricin at 2.8 Å. J. Biol. Chem. 262, 5398–5403.

    PubMed  CAS  Google Scholar 

  19. Katzin B.J., Collins E.J., Robertus J.D. 1991. Structure of ricin A-chain at 2.5 Å. Proteins. 10, 251–259.

    Article  PubMed  CAS  Google Scholar 

  20. Rutenber E., Robertus J.D. 1991. Structure of ricin B-chain at 2.5 Å resolution. Proteins. 10, 260–269.

    Article  PubMed  CAS  Google Scholar 

  21. Robertus J.D., Monzingo A.F. 2004. The structure of ribosome inactivating proteins. Mini Rev. Med. Chem. 4, 477–486.

    PubMed  CAS  Google Scholar 

  22. Halling K.C., Halling A.C., Murray E.E., Ladin B.F., Houston L.L., Weaver R.F. 1985. Genomic cloning and characterization of a ricin gene from Ricinus communis. Nucleic Acids Res. 13, 8019–8033.

    PubMed  CAS  Google Scholar 

  23. Wood K.A., Lord J.M., Wawrzynczak E.J., Piatak M. 1991. Preproabrin: Genomic cloning, characterisation and the expression of the A-chain in Escherichia coli. Eur. J. Biochem. 198, 723–732.

    Article  PubMed  CAS  Google Scholar 

  24. Rojo M.A., Citores L., Arias F.J., Ferreras J.M., Jimenez P., Girbes T. 2003. cDNA molecular cloning and seasonal accumulation of an ebulin 1-related dimeric lectin of dwarf elder (Sambucus ebulus L) leaves. Int. J. Biochem. Cell Biol. 35, 1061–1065.

    Article  PubMed  CAS  Google Scholar 

  25. Kozlov Yu.V., Kabishev A.A., Lukyanov E.V., Bayev A.A. 1988. The primary structure of the operons coding for Shigella dysenteriae toxin and temperature phage H30 shiga-like toxin. Gene. 67, 213–221.

    Article  PubMed  CAS  Google Scholar 

  26. Corpet F. 1988. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16, 10,881–10,890.

    CAS  Google Scholar 

  27. Murzin A.G., Lesk A.M., Chothia C. 1992. β-Trefoil fold. Patterns of structure and sequence in the Kunitz inhibitors interleukins-1β and 1α and fibroblast growth factors. J. Mol. Biol. 223, 531–543.

    Article  PubMed  CAS  Google Scholar 

  28. Wales R., Richardson P.T., Roberts L.M., Woodland H.R., Lord J.M. 1991. Mutational analysis of the galactose binding ability of recombinant ricin B chain. J. Biol. Chem. 266, 19,172–19,179.

    CAS  Google Scholar 

  29. van Damme E.J.M., Peumans W.J., Barre A., Rouge P. 1998. Plant lectins: A composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Crit. Rev. Plant Sci. 17, 576–692.

    Google Scholar 

  30. Pascal J.M., Day P.J., Monzingo A.F., Ernst S.R., Robertus J.D., Iglesias R., Perez Y., Ferreras J.M., Citores L., Girbes T. 2001. 2.8-Å crystal structure of a nontoxic type-II ribosome-inactivating protein, ebulin 1. Proteins. 43, 319–326.

    Article  PubMed  CAS  Google Scholar 

  31. Sweeney E.C., Tonevitsky A.G., Temiakov D.E., Agapov I.I., Saward S., Palmer R.A. 1997. Preliminary crystallographic characterization of ricin agglutinin. Proteins. 28, 586–589.

    Article  PubMed  CAS  Google Scholar 

  32. Olsnes S., Stirpe F., Sandvig K., Pihl A. 1982. Isolation and characterization of viscumin, a toxic lectin from Viscum album L. (mistletoe). J. Biol. Chem. 257, 13263–13270.

    PubMed  CAS  Google Scholar 

  33. Sweeney E.C., Tonevitsky A.G., Palmer R.A., Niwa H., Pfueller U., Eck J., Lentzen H., Agapov I.I., Kirpichnikov M.P. 1998. Mistletoe lectin I forms a double trefoil structure. FEBS Lett. 431, 367–370.

    Article  PubMed  CAS  Google Scholar 

  34. Olsnes S., Fernandez-Puentes C., Carrasco L., Vazquez D. 1975. Ribosome inactivation by the toxic lectins abrin and ricin. Kinetics of the enzymic activity of the toxin A-chains. Eur. J. Biochem. 60, 281–288.

    Article  PubMed  CAS  Google Scholar 

  35. Endo Y., Tsurugi K. 1987. RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on cukaryotic ribosomes. J. Biol. Chem. 262, 8128–8130.

    PubMed  CAS  Google Scholar 

  36. Hartley M.R., Legname G., Osborn R., Chen Z., Lord J.M. 1991. Single-chain ribosome inactivating proteins from plants depurinate Escherichia coli 23S ribosomal RNA. FEBS Lett. 290, 65–68.

    Article  PubMed  CAS  Google Scholar 

  37. Moazed D., Robertson J.M., Noller H.F. 1988. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature. 334, 362–364.

    Article  PubMed  CAS  Google Scholar 

  38. Larsson S.L., Sloma M.S., Nygard O. 2002. Conformational changes in the structure of domains II and V of 28S rRNA in ribosomes treated with the translational inhibitors ricin or alpha-sarcin. Biochim. Biophys. Acta. 1577, 53–62.

    PubMed  CAS  Google Scholar 

  39. Osborn R.W., Hartley M.R. 1990. Dual effects of ricin A chain on protein synthesis in rabbit reticulocyte lysate. Inhibition of initiation and translocation. Eur. J. Biochem. 193, 401–407.

    Article  PubMed  CAS  Google Scholar 

  40. Correll C.C., Munishkin A., Chan Y.L., Ren Z., Wool I.G., Steitz T.A. 1998. Crystal structure of the ribosomal RNA domain essential for binding elongation factors. Proc. Natl. Acad. Sci. USA. 95, 13,436–13,441.

    Article  CAS  Google Scholar 

  41. Correll C.C., Wool I.G., Munishkin A. 1999. The two faces of the Escherichia coli 23S rRNA sarcin/ricin domain: The structure at 1.11 Å resolution. J. Mol. Biol. 292, 275–287.

    Article  PubMed  CAS  Google Scholar 

  42. Ban N., Nissen P., Hansen J., Moore P.B., Steitz T.A. 2000. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science. 289, 905–920.

    Article  PubMed  CAS  Google Scholar 

  43. Gluck A., Endo Y., Wool I.G. 1992. Ribosomal RNA identity elements for ricin A-chain recognition and catalysis. Analysis with tetraloop mutants. J. Mol. Biol. 226, 411–424.

    Article  PubMed  CAS  Google Scholar 

  44. Allerson C.R., Verdine G.L. 1995. Synthesis and biochemical evaluation of RNA containing an intrahelical disulfide crosslink. Chem. Biol. 2, 667–675.

    Article  PubMed  CAS  Google Scholar 

  45. Marchant A., Hartley M.R. 1995. The action of pokeweed antiviral protein and ricin A-chain on mutants in the alpha-sarcin loop of Escherichia coli 23S ribosomal RNA. J. Mol. Biol. 254, 848–855.

    Article  PubMed  CAS  Google Scholar 

  46. Hudak K.A., Wang P., Tumer N.E. 2000. A novel mechanism for inhibition of translation by pokeweed antiviral protein: Depurination of the capped RNA template. RNA. 6, 369–380.

    Article  PubMed  CAS  Google Scholar 

  47. Endo Y., Tsurugi K. 1988. The RNA N-glycosidase activity of ricin A-chain. The characteristics of the enzymatic activity of ricin A-chain with ribosomes and with rRNA. J. Biol. Chem. 263, 8735–8739.

    PubMed  CAS  Google Scholar 

  48. Chaddock J.A., Monzingo A.F., Robertus J.D., Lord J.M., Roberts L.M. 1996. Major structural differences between pokeweed antiviral protein and ricin A-chain do not account for their differing ribosome specificity. Eur. J. Biochem. 235, 159–166.

    Article  PubMed  CAS  Google Scholar 

  49. Peumans W.J., Hao Q., van Damme E.J. 2001. Ribosome-inactivating proteins from plants: More than RNA N-glycosidases? FASEB J. 15, 1493–506.

    Article  PubMed  CAS  Google Scholar 

  50. Hudak K.A., Dinman J.D., Tumer N.E. 1999. Pokeweed antiviral protein accesses ribosomes by binding to L3. J. Biol. Chem. 274, 3859–3864.

    Article  PubMed  CAS  Google Scholar 

  51. Vater C.A., Bartle L.M., Leszyk J.D., Lambert J.M., Goldmacher V.S. 1995. Ricin A chain can be chemically cross-linked to the mammalian ribosomal proteins L9 and L10e. J. Biol. Chem. 270, 12933–12940.

    Article  PubMed  CAS  Google Scholar 

  52. Rajamohan F., Venkatachalam T.K., Irvin J.D., Uckun F.M. 1999. Pokeweed antiviral protein isoforms PAP-I, PAP-II, and PAP-III depurinate RNA of human immunodeficiency virus (HIV)-1. Biochem. Biophys. Res. Commun. 260, 453–458.

    Article  PubMed  CAS  Google Scholar 

  53. Barbieri L., Valbonesi P., Bonora E., Gorini P., Bolognesi A., Stirpe F. 1997. Polynucleotide:adenosine glycosidase activity of ribosome-inactivating proteins: Effect on DNA, RNA and poly(A). Nucleic Acids Res. 25, 518–522.

    Article  PubMed  CAS  Google Scholar 

  54. Chen X.Y., Link T.M., Schramm V.L. 1998. Ricin A-chain: Kinetics, mechanism, and RNA stem-loop inhibitors. Biochemistry. 37, 11605–11613.

    Article  PubMed  CAS  Google Scholar 

  55. Tregear J.W., Roberts L.M. 1992. The lectin gene family of Ricinus communis: Cloning of a functional ricin gene and three lectin pseudogenes. Plant Mol. Biol. 18, 515–525.

    Article  PubMed  CAS  Google Scholar 

  56. Lord J.M., Roberts L.M., Robertus J.D. 1994. Ricin: Structure, mode of action, and some current applications. FASEB J. 8, 201–208.

    PubMed  CAS  Google Scholar 

  57. Youle R.J., Huang A.H.C. 1976. Protein bodies from the endosperm of castor bean. Subfractionation, protein components, lectins, and changes during germination. Plant Physiol. 58, 703–709.

    Article  PubMed  CAS  Google Scholar 

  58. Lamb F.I., Roberts L.M., Lord J.M. 1985. Nucleotide sequence of cloned cDNA coding for preproricin. Eur. J. Biochem. 148, 265–270.

    Article  PubMed  CAS  Google Scholar 

  59. Ferrini J.B., Martin M., Taupiac M.P., Beaumelle B. 1995. Expression of functional ricin B chain using the baculovirus system. Eur. J. Biochem. 233, 772–777.

    Article  PubMed  CAS  Google Scholar 

  60. Lord J.M. 1985. Synthesis and intracellular transport of lectin and storage protein precursors in endosperm from castor bean. Eur. J. Biochem. 146, 403–409.

    Article  PubMed  CAS  Google Scholar 

  61. Lord J.M. 1985. Precursors of ricin and Ricinus communis agglutinin. Glycosylation and processing during synthesis and intracellular transport. Eur. J. Biochem. 146, 411–416.

    Article  PubMed  CAS  Google Scholar 

  62. Kimura Y., Hase S., Kobayashi Y., Kyogoku Y., Ikenaka T., Funatsu G. 1988. Structures of sugar chains of ricin D. J. Biochem. (Tokyo). 103, 944–949.

    CAS  Google Scholar 

  63. Frigerio L., Jolliffe N.A., Di Cola A., Felipe D.H., Paris N., Neuhaus J.M., Lord J.M., Ceriotti A., Roberts L.M. 2001. The internal propeptide of the ricin precursor carries a sequence-specific determinant for vacuolar sorting. Plant Physiol. 126, 167–175.

    Article  PubMed  CAS  Google Scholar 

  64. Harley S.M., Lord J.M. 1985. In vitro endoproteolytic cleavage of castor bean lectin precursors. Plant Sci. 41, 111–116.

    Article  CAS  Google Scholar 

  65. Harley S.M., Beevers H. 1982. Ricin inhibition of in vitro protein synthesis by plant ribosomes. Proc. Natl. Acad. Sci. USA. 79, 5935–5938.

    Article  PubMed  CAS  Google Scholar 

  66. Richardson P.T., Westby M., Roberts L.M., Gould J.H., Colman A., Lord J.M. 1989. Recombinant proricin binds galactose but does not depurinate 28S ribosomal RNA. FEBS Lett. 255, 15–20.

    Article  PubMed  CAS  Google Scholar 

  67. Frigerio L., Vitale A., Lord J.M., Ceriotti A., Roberts L.M. 1998. Free ricin A chain, proricin, and native toxin have different cellular fates when expressed in tobacco protoplasts. J. Biol. Chem. 273, 14194–14199.

    Article  PubMed  CAS  Google Scholar 

  68. Hegde R., Podder S.K. 1997. A-and B-subunit variant distribution in the holoprotein variants of protein toxin abrin: variants of abrins I and III have constant toxic A subunits and variant lectin B subunits. Arch. Biochem. Biophys. 344, 75–84.

    Article  PubMed  CAS  Google Scholar 

  69. Yang Q., Liu R.S., Gong Z.Z., Liu W.Y. 2002. Studies of three genes encoding Cinnamomin (a type II RIP) isolated from the seeds of camphor tree and their expression patterns. Gene. 284, 215–223.

    Article  PubMed  CAS  Google Scholar 

  70. Chambery A., Di Maro A., Monti M.M., Stirpe F., Parente A. 2004. Volkensin from Adenia volkensii Harms (kilyambiti plant), a type 2 ribosome-inactivating protein. Eur. J. Biochem. 271, 108–117.

    Article  PubMed  CAS  Google Scholar 

  71. Sandvig K., Olsnes S., Pihl A. 1976. Kinetics of binding of the toxic lectins abrin and ricin to surface receptors of human cells. J. Biol. Chem. 251, 3977–3984.

    PubMed  CAS  Google Scholar 

  72. van Deurs B., Pedersen L.R., Sundan A., Olsnes S., Sandvig K. 1985. Receptor-mediated endocytosis of a ricin-colloidal gold conjugate in Vero cells. Intracellular routing to vacuolar and tubulo-vesicular portions of the endosomal system. Exp. Cell Res. 159, 287–304.

    Article  PubMed  Google Scholar 

  73. Moya M., Dautry-Varsat A., Goud B., Louvard D., Boquet P. 1985. Inhibition of coated pit formation in Hep2 cells blocks the cytotoxicity of diphtheria toxin but not that of ricin toxin. J. Cell Biol. 101, 548–559.

    Article  PubMed  CAS  Google Scholar 

  74. Simpson J.C., Smith D.C., Roberts L.M., Lord J.M. 1998. Expression of mutant dynamin protects cells against diphtheria toxin but not against ricin. Exp. Cell Res. 239, 293–300.

    Article  PubMed  CAS  Google Scholar 

  75. Sandvig K., van Deurs B. 1999. Endocytosis and intracellular transport of ricin: recent discoveries. FEBS Lett. 452, 67–70.

    Article  PubMed  CAS  Google Scholar 

  76. Ghosh R.N., Mallet W.G., Soe T.T., McGraw T.E., Maxfield F.R. 1998. An endocytosed TGN38 chimeric protein is delivered to the TGN after trafficking through the endocytic recycling compartment in CHO cells. J. Cell Biol. 142, 923–936.

    Article  PubMed  CAS  Google Scholar 

  77. Wilcke M., Johannes L., Galli T., Mayau V., Goud B., Salamero J. 2000. Rab11 regulates the compartmentalization of early endosomes required for efficient transport from early endosomes to the trans-Golgi network. J. Cell Biol. 151, 1207–1220.

    Article  PubMed  CAS  Google Scholar 

  78. Sandvig K., van Deurs B. 1996. Endocytosis, intracellular transport, and cytotoxic action of Shiga toxin and ricin. Physiol. Rev. 76, 949–966.

    PubMed  CAS  Google Scholar 

  79. van Deurs B., Sandvig K., Petersen O.W., Olsnes S., Simons K., Griffiths G. 1988. Estimation of the amount of internalized ricin that reaches the trans-Golgi network. J. Cell Biol. 106, 253–267.

    Article  PubMed  Google Scholar 

  80. Stirpe F., Sandvig K., Olsnes S., Pihl A. 1982. Action of viscumin, a toxic lectin from mistletoe, on cells in culture. J. Biol. Chem. 257, 13,271–13,277.

    CAS  Google Scholar 

  81. Riederer M.A., Soldati T., Shapiro A.D., Lin J., Pfeffer S.R. 1994. Lysosome biogenesis requires Rab9 function and receptor recycling from endosomes to the trans-Golgi network. J. Cell Biol. 125, 573–582.

    Article  PubMed  CAS  Google Scholar 

  82. Mallard F., Antony C., Tenza D., Salamero J., Goud B., Johannes L. 1998. Direct pathway from early/recycling endosomes to the Golgi apparatus revealed through the study of shiga toxin B-fragment transport. J. Cell Biol. 143, 973–990.

    Article  PubMed  CAS  Google Scholar 

  83. Mallard F., Tang B.L., Galli T., Tenza D., Saint-Pol A., Yue X., Antony C., Hong W., Goud B., Johannes L. 2002. Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform. J. Cell Biol. 156, 653–664.

    Article  PubMed  CAS  Google Scholar 

  84. Sandvig K., Garred O., Prydz K., Kozlov J.V., Hansen S.H., van Deurs B. 1992. Retrograde transport of endocytosed Shiga toxin to the endoplasmic reticulum. Nature. 358, 510–512.

    Article  PubMed  CAS  Google Scholar 

  85. Majoul I.V., Bastiaens P.I., Soling H.D. 1996. Transport of an external Lys-Asp-Glu-Leu (KDEL) protein from the plasma membrane to the endoplasmic reticulum: Studies with cholera toxin in Vero cells. J. Cell Biol. 133, 777–789.

    Article  PubMed  CAS  Google Scholar 

  86. Cosson P., Letourneur F. 1997. Coatomer (COPI)-coated vesicles: Role in intracellular transport and protein sorting. Current Opin. Cell Biol. 9, 484–487.

    Article  CAS  Google Scholar 

  87. Munro S., Pelham H.R. 1987. A C-terminal signal prevents secretion of luminal ER proteins. Cell. 48, 899–907.

    Article  PubMed  CAS  Google Scholar 

  88. Girod A., Storrie B., Simpson J.C., Johannes L., Goud B., Roberts L.M., Lord J.M., Nilsson T., Pepperkok R. 1999. Evidence for a COP-I-independent transport route from the Golgi complex to the endoplasmic reticulum. Nature Cell Biol. 1, 423–430.

    Article  PubMed  CAS  Google Scholar 

  89. Simpson J.C., Dascher C., Roberts L.M., Lord J.M., Blach W.E. 1995. Ricin cytotoxicity is sensitive to recycling between the endoplasmic reticulum and the Golgi complex. J. Biol. Chem. 270, 20,078–20,083.

    CAS  Google Scholar 

  90. White J., Johannes L., Mallard F., Girod A., Grill S., Reinsch S., Keller P., Tzschaschel B., Echard A., Goud B., Stelzer E.H. 1999. Rab6 coordinates a novel Golgi to ER retrograde transport pathway in live cells. J. Cell Biol. 147, 743–760.

    Article  PubMed  CAS  Google Scholar 

  91. Wesche J., Rapak A., Olsnes S. 1999. Dependence of ricin toxicity on translocation of the toxin A-chain from the endoplasmic reticulum to the cytosol. J. Biol. Chem. 274, 34,443–34,449.

    CAS  Google Scholar 

  92. Day P.J., Owens S.R., Wesche J., Olsnes S., Roberts L.M., Lord J.M. 2001. An interaction between ricin and calreticulin that may have implications for toxin trafficking. J. Biol. Chem. 276, 7202–7208.

    Article  PubMed  CAS  Google Scholar 

  93. Johnson A.E., van Waes M.A. 1999. The translocon: A dynamic gateway at the ER membrane. Annu. Rev. Cell Dev. Biol. 15, 799–842.

    Article  PubMed  Google Scholar 

  94. Tsai B., Rapoport T.A. 2002. Unfolded cholera toxin is transferred to the ER membrane and released from protein disulfide isomerase upon oxidation by Ero1. J. Cell Biol. 159, 207–216.

    Article  PubMed  CAS  Google Scholar 

  95. Ellgaard L., Molinari M., Helenius A. 1999. Setting the standards: Quality control in the secretory pathway. Science. 286, 1882–1888.

    Article  PubMed  CAS  Google Scholar 

  96. Russ G., Esquivel F., Yewdell J.W., Cresswell P., Spies T., Bennink J.R. 1995. Assembly, intracellular localization, and nucleotide binding properties of the human peptide transporters TAP1 and TAP2 expressed by recombinant vaccinia viruses. J. Biol. Chem. 270, 21,312–21,318.

    CAS  Google Scholar 

  97. Smith D.C., Gallimore A., Jones E., Roberts B., Lord J.M., Deeks E., Cerundolo V., Roberts L.M. 2002. Exogenous peptides delivered by ricin require processing by signal peptidase for transporter associated with antigen processing-independent MHC class I-restricted presentation. J. Immunol. 169, 99–107.

    PubMed  CAS  Google Scholar 

  98. Simpson J.C., Roberts L.M., Romisch K., Davey J., Wolf D.H., Lord J.M. 1999. Ricin A chain utilises the endoplasmic reticulum-associated protein degradation pathway to enter the cytosol of yeast. FEBS Lett. 459, 80–84.

    Article  PubMed  CAS  Google Scholar 

  99. Spooner R.A., Watson P.D., Marsden C.J., Smith D.C., Moore K.A., Cook J.P., Lord J.M. 2004. Protein disulphide-isomerase reduces ricin to its A and B chains in the endoplasmic reticulum. Biochem. J. 383, 285–293.

    Article  PubMed  CAS  Google Scholar 

  100. Day P.J., Pinheiro T.J., Roberts L.M., Lord J.M. 2002. Binding of ricin A-chain to negatively charged phospholipid vescles leads to protein structural changes and destabilizes the lipid bilayer. Biochemistry. 41, 2836–2843.

    Article  PubMed  CAS  Google Scholar 

  101. Deeks E.D., Cook J.P., Day P.J., Smith D.C., Roberts L.M., Lord J.M. 2002. The low lysine content of ricin A chain reduces the risk of proteolytic degradation after translocation from the endoplasmic reticulum to the cytosol. Biochemistry. 41, 3405–3413.

    Article  PubMed  CAS  Google Scholar 

  102. Argent R.H., Parrott A.M., Day P.J., Roberts L.M., Stockley P.G., Lord J.M., Radford S.E. 2000. Ribosome-mediated folding of partially unfolded ricin A-chain. J. Biol. Chem. 275, 9263–9269.

    Article  PubMed  CAS  Google Scholar 

  103. Barbieri L., Battelli M.G., Stirpe F. 1993. Ribosome-inactivating proteins from plants. Biochim. Biophys. Acta. 1154, 237–282.

    PubMed  CAS  Google Scholar 

  104. Peumans W.J., van Damme E.J. 1995. Lectins as plant defense proteins. Plant Physiol. 109, 347–352.

    Article  PubMed  CAS  Google Scholar 

  105. Kumar M.A., Timm D.E., Neet K.E., Owen W.G., Peumans W.J., Rao A.G. 1993. Characterization of the lectin from the bulbs of Eranthis hyemalis (winter aconite) as an inhibitor of protein synthesis. J. Biol. Chem. 268, 25176–25183.

    PubMed  CAS  Google Scholar 

  106. Chen Y., Peumans W.J., van Damme E.J. 2002. The Sambucus nigra type-2 ribosome-inactivating protein SNA-I’ exhibits in planta antiviral activity in transgenic tobacco. FEBS Lett. 516, 27–30.

    Article  PubMed  CAS  Google Scholar 

  107. Olsnes S., Pihl A. 1981. Chimeric toxins. Pharmacol. Ther. 15, 355–381.

    Article  PubMed  CAS  Google Scholar 

  108. Olsnes S. 1987. Closing in on ricin action. Nature. 328, 474–475.

    Article  PubMed  CAS  Google Scholar 

  109. Kreitman R.J. 1999. Immunotoxins in cancer therapy. Curr. Opin. Immunol. 11, 570–578.

    Article  PubMed  CAS  Google Scholar 

  110. Frankel A.E., Neville D.M., Bugge T.A., Kreitman R.J., Leppla S.H. 2003. Immunotoxin therapy of hematologic malignancies. Semin. Oncol. 30, 545–557.

    Article  PubMed  CAS  Google Scholar 

  111. Frankel A.E., Kreitman R.J. 2005. CLL immunotoxins. Leuk. Res. 29, 985–986.

    Article  PubMed  CAS  Google Scholar 

  112. Jain R.K. 1996. Delivery of molecular medicine to solid tumors. Science. 271, 1079–1080.

    PubMed  CAS  Google Scholar 

  113. Baluna R., Rizo J., Gordon B.E., Ghetie V., Vitetta E.S. 1999. Evidence for a structural motif in toxins and interleukin-2 that may be responsible for binding to endothelial cells and initiating vascular leak syndrome. Proc. Natl. Acad. Sci. USA. 96, 3957–3962.

    Article  PubMed  CAS  Google Scholar 

  114. Beaumelle B., Taupiac M.P., Lord J.M., Roberts L.M. 1997. Ricin A chain can transport unfolded dihydrofolate reductase into the cytosol. J. Biol. Chem. 272, 22,097–22,102.

    Article  CAS  Google Scholar 

  115. Smith D.C., Lord J.M., Roberts L.M., Tartour E., Johannes L. 2002. 1st class ticket to class I: Protein toxins as pathfinders for antigen presentation. Traffic. 3, 697–704.

    Article  PubMed  CAS  Google Scholar 

  116. Tartour E., Ciree A., Haicheur N., Benchetrit F., Fridman W.H. 2000. Development of non-live vectors and procedures (liposomes, pseudo-viral particles, toxin, beads, adjuvantsellipsis) as tools for cancer vaccines. Immunol. Lett. 74, 45–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © J.V. Kozlov, O.J. Sudarkina, A.G. Kurmanova, 2006, published in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 4, pp. 711–723.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozlov, J.V., Sudarkina, O.J. & Kurmanova, A.G. Ribosome-inactivating lectins of plants. Mol Biol 40, 635–646 (2006). https://doi.org/10.1134/S0026893306040169

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893306040169

Key words

Navigation