Skip to main content
Log in

S-DNA, over-supercoiled DNA with a 1.94-to 2.19-Å rise per base pair

  • Structural-Functional Analysis of Biopolymers and Their Complexes
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Supercoiled 3993-bp pGEMEX DNA immobilized on four substrates (freshly cleaved mica, standard amino mica, and modified amino mica with an increased or decreased surface charge density in comparison to standard amino mica) has been visualized by atomic force microscopy in the air. Plectonomically supercoiled DNA molecules, as well as single molecules with an extremely high compaction level (i.e., with a significantly higher superhelix density compared to those previously observed experimentally or estimated theoretically), have been visualized on modified amino mica with an increased surface charge density. The distance between nucleotide pairs along the duplex axis has been determined by measuring the contour length of individual oversupercoiled DNA molecules. The estimated rise per base pair varies from 1.94 to 2.19 Å. These supercoiled DNA molecules, which are compressed like a spring and have a decreased rise per base pair compared to previously known DNA forms are considered to be a new form of DNA, S-DNA. A model of S-DNA has been constructed. Molecules of S-DNA may be an intermediate in the course of the compaction of single supercoiled DNA molecules into spheroids and minitoroids. The DNA oversupercoiling, followed by the compression of the supercoiled molecules, has been shown to be accounted for by a high surface charge density of amino mica on which DNA molecules are immobilized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ivanov V. 1983. DNA double helix. Mol. Biol. 17, 616–621.

    CAS  Google Scholar 

  2. Saenger W. 1984. Principles of Nucleic Acid Structure. N.Y.: Springer.

    Google Scholar 

  3. Wang J. 1979. Helical repeat of DNA in solution. Proc. Natl. Acad. Sci. USA. 76, 200–203.

    CAS  PubMed  Google Scholar 

  4. Cluzel P., Lebrun A., Heller C., Lavery R., Viovy J., Chatenay D., Caron F. 1996. DNA: An extensible molecule. Science. 271, 792–794.

    CAS  PubMed  Google Scholar 

  5. Smith S., Cui Y., Bustamante C. 1996. Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules. Science. 271, 795–799.

    CAS  PubMed  Google Scholar 

  6. Leuba S., Karymov M., Tomschik M., Ramjit R., Smith P., Zlatanova J. 2003. Assembly of single chromatin fibers depends on the tension in the DNA molecule: Magnetic tweezers study. Proc. Natl. Acad. Sci. USA. 100, 495–500.

    Article  CAS  PubMed  Google Scholar 

  7. Bennink M., Leuba S., Leno G., Zlatanova J., De Grooth B., Greve J. 2001. Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers. Nature Struct. Biol. 8, 606–610.

    Article  CAS  PubMed  Google Scholar 

  8. Rivetti C., Codeluppi S., Dieci G., Bustamante C. 2003. Vizualizing RNA extrusion and DNA wrapping in transcription elongation complexes of bacteriae and eukaryotic RNA polymerases. J. Mol. Biol. 326, 1413–1426.

    Article  CAS  PubMed  Google Scholar 

  9. Rivetti C., Codeluppi S. 2001. Accurate length determination of DNA molecules visualized by atomic force microscopy: Evidence for a partial B-to A-form transition on mica. Ultramicroscopy. 87, 55–66.

    CAS  PubMed  Google Scholar 

  10. Lyubchenko Y., Gall A., Shlyakhtenko L., Harrington R., Jacobs B., Oden P., Lindsay S. 1992. Atomic force microscopy imaging of double stranded DNA and RNA. J. Biomol. Struct. Dyn. 10, 589–606.

    CAS  PubMed  Google Scholar 

  11. Lyubchenko Y., Shlyakhtenko L. 1997. Visualization of supercoiled DNA with atomic force microscopy in situ. Proc. Natl. Acad. Sci. USA. 94, 496–501.

    Article  CAS  PubMed  Google Scholar 

  12. Shlyahtenko L., Gall A., Filonov A., Cerovac Z., Lushnikov A., Lyubchenko Y. 2003. Silatrane-based surface chemistry for immobilization of DNA, protein-DNA complexes and other biological materials. Ultramicroscopy. 97, 279–287.

    Google Scholar 

  13. Limansky A. 2001. Analysis of aminomodified mica as a substrate for atomic force microscopy of nucleic acids. Biopolim. Kletka. 17, 292–297.

    Google Scholar 

  14. Limansky A., Shlyakhtenko L., Schaus S., Henderson E., Lyubchenko Y. 2002. Aminomodified probes for atomic force microscopy. Probe Microsc. 2, 227–234.

    Google Scholar 

  15. Butt H. 1991. Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. Biophys. J. 60, 1438–1444.

    CAS  Google Scholar 

  16. Hansma H., Golan R., Hsieh W., Daubendiek S., Kool E. 1999. Polymerase activities and RNA structures in the atomic force microscope. J. Struct. Biol. 127, 240–247.

    Article  CAS  PubMed  Google Scholar 

  17. Cherny D., Jovin T. 2001. Electron and scanning force microscopy studies of alterations in supercoiled DNA tertiary structure. J. Mol. Biol. 313, 295–307.

    Article  CAS  PubMed  Google Scholar 

  18. Tanigawa M., Okada T. 1998. Atomic force microscopy of supercoiled DNA structure on mica. Anal. Chim. Acta. 365, 19–25.

    Article  CAS  Google Scholar 

  19. Bussiek M., Mucke N., Langowski J. 2003. Polylysine-coated mica can be used to observe systematic changes in the supercoiled DNA conformation by scanning force microscopy in solution. Nucleic Acids Res. 31, 1–10.

    Article  Google Scholar 

  20. Limansky A. 2002. Analysis of aminomodified probes for atomic force microscopy of biological molecules. Biopolim. Kletka. 18, 62–70.

    Google Scholar 

  21. Limansky A., Limanskaya O. 2002. Analysis of genomic DNA by atomic force microscopy. Tsitol. Genet. 36 6–30.

    Google Scholar 

  22. Mazur G., Jernigan R., Sarai A. 2003. Conformational effects upon DNA stretching. Mol. Biol. 37, 277–287.

    Article  CAS  Google Scholar 

  23. Shlyakhtenko L., Gall A., Weimer J., Hawn D., Lyubchenko Y. 1999. Atomic force microscopy imaging of DNA covalently immobilized on a functionalized mica substrate. Biophys. J. 77, 568–576.

    CAS  PubMed  Google Scholar 

  24. Vologodsky A. 1988. Topologiya I fizicheskie svoistva kol’tsevykh DNK (Topology and Properties of Circular DNAs). Moscow: Nauka.

    Google Scholar 

  25. Boles T., White, Cozzarelli N. 1990. Structure of plectonomically supercoiled DNA. J. Mol. Biol. 213, 931–951.

    CAS  PubMed  Google Scholar 

  26. Conwell C., Vilfan I., Hud N. 2003. Controlling the size of nanoscale toroidal DNA condensates with static curvature and ionic strength. Proc. Natl. Acad. Sci. USA. 100, 9296–9301.

    Article  CAS  PubMed  Google Scholar 

  27. Kemura K., Rybenkov V., Crisona N., Hirano T., Cozzarelli N. 1999. 13S Condensin actively reconfigures DNA by introducing global positive writhe: Implications for chromosome condensation. Cell. 98, 239–248.

    Google Scholar 

  28. Hizume K., Yoshimura S., Maruyama H., Kim J., Wada H., Takeyasu K. 2002. Chromatin reconstitution: Development of a salt-dialysis method monitored by nanotechnology. Arch. Histol. Cytol. 65, 405–413.

    Article  CAS  PubMed  Google Scholar 

  29. Yoshimura S., Hizume K., Murakami A., Sutani T., Takeyasu K., Yanagida M. 2002. Condensin architecture and interaction with DNA: Regulatory non-SMC subunits bind to the head of SMC heterodimer. Curr. Biol. 12, 508–513.

    Article  CAS  PubMed  Google Scholar 

  30. Polyanichko A.M., Chikhirzhina E.V., Andrushchenko V.V., Kostyleva E.I., Wieser H., Vorob’ev V.I. 2004. The effect of Ca2+ ions on DNA compaction in the complex with nonhistone chromosomal HMG1 protein. Mol. Biol. 38, 701–712.

    Google Scholar 

  31. Limansky A. 2003. Atomic force microscopy: From visualizing DNA and protein molecules to measuring the force of intermolecular interactions. Usp. Sovrem. Biol. 123, 531–542.

    Google Scholar 

  32. Newlin D., Miller K., Pilch D. 1984. Interactions of molecules with nucleic acids: 7. Intercalation and T-A specificity of daunomycin in DNA. Biopolymers. 23, 139–158.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © L.A. Limanskaya, A.P. Limansky, 2006, published in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 1, pp. 122–136.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Limanskaya, L.A., Limansky, A.P. S-DNA, over-supercoiled DNA with a 1.94-to 2.19-Å rise per base pair. Mol Biol 40, 107–120 (2006). https://doi.org/10.1134/S0026893306010158

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893306010158

Key words

Navigation