Skip to main content
Log in

Prosthecodimorpha staleyi gen. nov., sp. nov., Novel Prosthecate Bacteria within the Family Ancalomicrobiaceae and Reclassification of the Polyphyletic Genus Prosthecomicrobium

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

An isolate of prosthecate bacteria was isolated from the takyr soil of a rice field on the Akdala massif (Kazakhstan) and designated as strain 22T. Strain 22T was represented by gram-negative, aerobic, motile, oxidase and catalase-positive bacteria. Cells of this strain formed numerous prosthecae extending in different directions from the cell surface. Bacteria had a dimorphic life cycle, with two different morphological types of cells. The prosthecae may be short (i.e., less than 1.0 µm long) or long (i.e., more than 2.0 µm long). Cells reproduced by budding and grew within the pH range of 6.5–8.5 and at 28–30°C. Major cellular fatty acids were C18:1 ω7, C16:0, C19:1 branched, and C16:1 ω7. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain 22T shared the highest gene sequence similarity with Prosthecomicrobium hirschii 16T (99.9%) and formed a common branch on the phylogenomic tree with P. hirschii 16T and Siculibacillus lacustris SA-279T. This branch was only distantly related to the phylogenetic lineage defined by the type species of the genus Prosthecomicrobium, P. pneumaticum ATCC 23633T, thus indicating a polyphyletic nature of the genus Prosthecomicrobium. The average nucleotide identity (ANI) and in silico DNA–DNA hybridization (dDDH) values between strain 22T and the most closely related species P. hirschii 16T were 93.6 and 47.6%, respectively, and were below the threshold accepted for species demarcation. Based on the results of phylogenetic analysis, strains 22T and 16T should be assigned to the Ancalomicrobiaceae family, with introduction of a novel genus Prosthecodimorpha gen. nov. The G + C content of the genome of strain 22T was 61.9%. Strain 22T represented a novel species in a novel genus, for which the name Prosthecodimorpha staleyi gen. nov., sp. nov. is proposed, with the type strain 22T (=VKM B-3576T = UQM 41461T = DSMZ 113594T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Atlas, R.M., Handbook of Microbiological Media, Taylor and Francis Group, Ed., LLC, 2010, p. 2043.

  2. Auch, A.F., Jan, M., Klenk, H.P., and Göker, M., Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison, Stand. Genomic. Sci. 2010, vol. 2, pp. 117–134. https://doi.org/10.4056/sigs.531120

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., Pyshkin, A.V., Sirotkin, A.V., Vyahhi, N., Tesler, G., Alekseyev, M.A., and Pevzner, P.A., SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing, J. Comput. Bi-ol., 2012, vol. 19, pp. 455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  Google Scholar 

  4. Bolger, A.M., Lohse, M., and Usadel, B., Trimmomatic: a flexible trimmer for illumina sequence data, Bioinformatics, 2014, vol. 30, pp. 2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boone, D.R., Castenholz, R.W., and Garrity, G.M., Taxonomic outline of the Archaea and Bacteria, in Bergey’s Manual of Systematic Bacteriology: The Archaea and the Deeply Branching and Phototrophic Bacteria, Whit-man, W.B., Ed., N.Y.: Springer, 2001b, vol. 1, pp. 155–166.

    Book  Google Scholar 

  6. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T.L., BLAST+: architecture and applications. BMC, Bioinformatics, 2009, vol. 10, p. 421. https://doi.org/10.3389/fgene.2021.822986

    Article  PubMed  Google Scholar 

  7. Chaumeil, P.A., Mussig, A.J., Hugenholtz, P., and Parks, D.H., GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database, Bioinformatics, 2020, vol. 36, pp. 1925–1927. https://doi.org/10.1093/bioinformatics/btz848

    Article  CAS  Google Scholar 

  8. Chun, J., Oren, A., Ventosa, A., Christensen, H., Arahal, D.R., Costa, M.S., Rooney, A.P., Yi, H., Xu, X.-W., Meyer, S., and Trujillo, M.E., Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes, Int. J. Syst. Evol. Microbiol., 2018, vol. 68, pp. 461–466. https://doi.org/10.1099/ijsem.0.002516

    Article  CAS  PubMed  Google Scholar 

  9. Dahal, R.H., Chaudhary, D.K., and Kim, J., Pinisolibacter ravus gen. nov., sp. nov., isolated from pine forest soil and allocation of the genera Ancalomicrobium and Pinisolibacter to the family Ancalomicrobiaceae fam. nov., and emendation of the genus Ancalomicrobium Staley, 1968, Int. J. Syst. Evo.l Microbiol., 2018, vol. 68, pp. 1955−1962. https://doi.org/10.1099/ijsem.0.002772

    Article  CAS  Google Scholar 

  10. Edgar, R.C., Muscle: multiple sequence alignment with high accuracy and high throughput, Nucleic. Acids Res., 2004, vol. 32, pp. 1792−1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hirch, P., Bernhard, M., Cohen, S.S., Ensign, J.C., Jannasch, H.W., Koch, A.I., Marshall, K.C., Matin, A., Poindexter, J.S., Rittenberg, S.C., Smith, D.C., and Veldkamp, H., Life under conditions of low nutrient concentrations, in Strategies of Microbial Life in Extreme Environment, Shillo, M., Ed., Dahlem Konferenzen, 1979, pp. 357−372.

    Google Scholar 

  12. Hoang, D.T., Chernomor, O., Von Haeseler, A., Minh, B.Q., and Vinh, L.S., UFBoot2: improving the ultrafast bootstrap approximation, Mol. Biol. Evol., 2017, vol. 35, pp. 518–522. https://doi.org/10.1093/molbev/msx281

    Article  CAS  PubMed Central  Google Scholar 

  13. Hoang, D.T., Vinh, L.S., Flouri, T., Stamatakis, A., von Haeseler, A., and Minh, B.Q., MPBoot: fast phylogenetic maximum parsimony tree inference and bootstrap approximation, BMC Evol. Biol., 2018, vol. 18, p. 11. https://doi.org/10.1186/s12862-018-1131-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hordt, A., Lopez, M.G., Meier-Kolthoff, J.P., Schleuning, M., Weinhold, L.-M., Tindall, B.J., Gronow, S., Kyrpides, N.C., Woyke, T., and Goker, M., Analysis of 1,000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria, Front. Microbiol., 2020, vol. 11, p. 1−112. https://doi.org/10.3389/fmicb.2020.00468

    Article  Google Scholar 

  15. Jain, C., Rodriguez, R.L.-M., Phillippy, A.M., Konstantinidis, K.T., and Aluru, S., High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries, Nat. Commun., 2018, vol. 9, p. 5114. https://doi.org/10.1038/s41467-018-07641-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., Haeseler, A., and Jermiin, L.S., Model Finder: fast model selection for accurate phylogenetic estimates, Nat. Methods., 2017, vol. 14, pp. 587–589. https://doi.org/10.1038/nmeth.4285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kumar, S., Stecher, G., and Tamura, K., MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 2016, vol. 33, pp. 1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lane, D.J., 16S/23S rRNA sequencing in nucleic acid techniques in bacterial systematics, in Nucleic Acid Techniques in Bacterial Systematics, Stackebrandt, E. and Goodfel-low, M., Eds., Chichester: Wiley, 1991, pp. 115−175.

    Google Scholar 

  19. Lee, K.-B., Liu, C.-T., Anzai, Y., Kim, H., Aono, T., and Oyaizu, H., The hierarchical system of the ‘Alphaproteobacteria’: description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov., Int. J. Syst. Evol. Microbiol., 2005, vol. 55, pp. 1907–1919. https://doi.org/10.1099/ijs.0.63663-0

    Article  CAS  PubMed  Google Scholar 

  20. Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M.A., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H., An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids, J. Microbiol. Methods, 1984, vol. 2, pp. 233−241.

    Article  CAS  Google Scholar 

  21. Nguyen, L.-T., Schmidt, H.A., Haeseler, A., and Minh, B.Q., IQ-TREE: a fast and effective stochastic algorithm for estimating maximumlikelihood phylogenies, Mol. Biol. Evol., 2015, vol. 32, pp. 268–274. https://doi.org/10.1093/molbev/msu300

    Article  CAS  PubMed  Google Scholar 

  22. Park, S., Jung, Y.T., Kim, S., and Yoon, J.H., Devosia confluentis sp. nov., isolated from the junction between the ocean and a freshwater lake, and reclassification of two Vasilyevaea species as Devosia enhydra comb. nov. and Devosia mishustinii comb. nov., Int. J. Syst. Evol. Microbiol., 2016, vol. 66, pp. 3935−3941. https://doi.org/10.1099/ijsem.0.001291

    Article  CAS  PubMed  Google Scholar 

  23. Poindexter, J.S., Oligotrophy. Fast and famine existence, Advans. Microbiol. Ecol., 1981, vol. 5, pp. 63‒89.

    Article  CAS  Google Scholar 

  24. Schlesner, H., Kath, T., Fischer, A., and Stackebrandt, E., Studies on the phylogenetic position of Prosthecomicrobium pneumaticum, Prosthecomicrobium enhydrum, Ancalomicrobium adetum, and various Prosthecomicrobium-like bacteria, Syst. Appl. Microbiol., 1989, vol. 12, pp. 150−155. https://doi.org/10.1016/S0723-2020(89)80006-2

    Article  CAS  Google Scholar 

  25. Semenov, A.M. and Vasilyeva, L.V., Morphological and physiological characteristics of the oligotrophic prosthecobacterium Prosthecomicrobium hirschii grown under conditions of batch and continuous cultivation, Mikrobiologiya, 1986, vol. 55, pp., 248−252.

  26. Slobodkina, G.B., Merkel, A.Y., Novikov, A.A., Bonch-Osmolovskaya, E.A., and Slobodkin, A.I., Pelomicrobium methylotrophicum gen. nov., sp. nov. a moderately thermophilic, facultatively anaerobic, lithoautotrophic and methylotrophic bacterium isolated from a terrestrial mud volcano, Extremophiles, 2020, vol. 24, pp. 177−185. https://doi.org/10.1007/s00792-019-01145-0

    Article  CAS  PubMed  Google Scholar 

  27. Staley, J.T., Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria, J. Bacteriol., 1968, vol. 95, pp. 1921−1942. https://doi.org/10.1128/JB.95.5.1921-1942.1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Staley, J.T., Prosthecomicrobium hirschii, a new species in a redefined genus, Int. J. Syst. Bacteriol., 1984, vol. 34, pp. 304−308. https://doi.org/10.1099/00207713-34-3-304

    Article  Google Scholar 

  29. Tatusova, T., DiCuccio M., Badretdin, A., Chetvernin, V., Nawrocki, E.P., Zaslavsky, L., Lomsadze, A., Kim, D., Pruitt, K.D., Borodovsky, M., and Ostell, J., NCBI prokaryotic genome annotation pipeline, Nucleic. Acids Res. 2016, vol. 44, pp. 6614–6624. https://doi.org/10.1093/nar/gkw569

  30. Vasilyeva, L.V., Oligotrofic microorganisms as components of biogeocoenosis, in Soil Microorganisms as Components of Biogeocoenosis, Mishustin, E.N., Ed., Moscow, Nauka, 1984, pp. 232‒241.

    Google Scholar 

  31. Vasilyeva, L.V., Prostecobactheria in soils of rice fields, in Increase in Efficiency of Soils of Rice Fields, Mishustin, E.N., Ed., Moscow, Science, 1985, pp. 125‒132.

    Google Scholar 

  32. Vasil’eva, L.V., Semenov, A.M., and Giniyatullina, A.I., A new species of soil bacteria of the genus Prosthecomicrobium, Microbiology, 1991, vol. 60, no. 2, pp. 243‒250.

    Google Scholar 

  33. Vasilyeva, L.V and Zavarzin, G.A., Dissipotrophs in the microbial community, Microbiologiya, 1995, vol. 64, no.2, pp. 239‒244.

    Google Scholar 

  34. Yee, B., Oertli, G.E., Fuerst, J.A., and Staley, J.T., Reclassification of the polyphyletic genus Prosthecomicrobium to form two novel genera, Vasilyevaea gen. nov. and Bauldia gen. nov. with four new combinations: Vasilyevaea enhydra comb. nov., Vasilyevaea mishustinii comb. nov., Bauldia consociata comb. nov. and Bauldia litoralis comb. nov., Int. J. Syst. Evol. Microbiol., 2010, vol. 60, pp. 2960−2966. https://doi.org/10.1099/ijs.0.018234-0

    Article  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

Bioinformatic analysis was performed using computing resources at the SciBear OU (https://sci-bear.com/).

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Vasilyeva.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilyeva, L., Grouzdev, D., Koziaeva, V. et al. Prosthecodimorpha staleyi gen. nov., sp. nov., Novel Prosthecate Bacteria within the Family Ancalomicrobiaceae and Reclassification of the Polyphyletic Genus Prosthecomicrobium. Microbiology 91, 479–488 (2022). https://doi.org/10.1134/S0026261722601105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261722601105

Keywords:

Navigation