Skip to main content
Log in

Structural Peculiarities and Biological Properties of the Lipopolysaccharide from Herbaspirillum seropedicae Z78

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Lipopolysaccharide was isolated by phenol extraction from the surface membrane of the nitrogen-fixing endophytic rhizobacterium Herbaspirillum seropedicae, strain Z78. The lipopolysaccharide’s lipid A contained 3-hydroxydecanoic, 3-hydroxydodecanoic, dodecanoic, tetradecanoic, and hexadecanoic acids. The 3-hydroxydodecanoic acid was amide-linked to the sugar backbone of the lipid A. The structure of the O-polysaccharide from H. seropedicae Z78 was established for the first time. It is characterized by heterogeneity and by the presence of glycerol, a component rarely found in gram-negative bacteria. The O polysaccharide of H. seropedicae Z78 was found to consist of two types of repeating units: one represented by glycerol-1-phosphate and the other by the glycerol-1-phosphate of the backbone, which is substituted at the 2-position by N-acetyl-D-glucosamine. The lipopolysaccharide of the H. seropedicae Z78 was weakly toxic to warm-blooded animals and moderately and dose-dependently induced interleukin synthesis by human whole blood cells and NO synthesis by mouse splenocytes. This may indicate that the H. seropedicae lipopolysaccharide is a promising antagonist of classical endotoxins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Baldani, V.L.D., Baldani, J.I., Olivares, F.L., and Döbereiner, J., Identification and ecology of Herbaspirillum seropedicae and closely related Pseudomonas rubrisubalbicans, Symbiosis, 1992, vol. 13, pp. 65−73.

    Google Scholar 

  2. Balsanelli, E., Tuleski, T.R., de Baura, V.A., Yates, M.G., Chubatsu, L.S., Pedrosa, F.O., de Souza, E.M., and Monteiro, R.A., Maize root lectins mediate the interaction with Herbaspirillum seropedicae via N-acetyl glucosamine residues of lipopolysaccharides, PLoS One, 2013, vol. 8. e77001. doi 10.1371/journal.pone.0077001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Berg, G., Eberl, L., and Hartmann, A., The rhizosphere as a reservoir for opportunistic human pathogenic bacteria, Environ. Microbiol., 2005, vol. 7, pp. 1673–1685.

    Article  PubMed  CAS  Google Scholar 

  4. Bock, K. and Pedersen, C., Carbon-13 nuclear magnetic resonance spectroscopy of monosaccharides, Adv. Carbohydr. Chem. Biochem., 1983, vol. 41, pp. 27–66.

    Article  CAS  Google Scholar 

  5. Conrad, H.E., Methylation of carbohydrates with methylsulfinyl anion and methyl iodide in dimethyl sulfoxide, Methods Carbohydr. Chem., 1972, vol. 6, pp. 361–364.

    CAS  Google Scholar 

  6. Green, L.C., Wagner, D.A., Glogowski, J. Skipper, P.L., Wishnok, J.S., and Tannenbaum, S.R., Analysis of nitrate, nitrite, and (15 N) nitrate in biological fluids, Anal. Biochem., 1982, vol. 126, pp. 131–138.

    Article  PubMed  CAS  Google Scholar 

  7. Hitchcock, P.J. and Brown, T.M., Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels, J. Bacteriol., 1983, vol. 154, pp. 269−277.

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Komaniecka, I., Zdzisinska, B., Kandefer-Szerszen, M., and Choma, A., Low endotoxic activity of lipopolysaccharides isolated from Bradyrhizobium, Mesorhizobium, and Azospirillum strains, Microbiol. Immunol., 2010, vol. 54, pp. 717−725.

    Article  PubMed  CAS  Google Scholar 

  9. Kondakova, A.N., Fudala, R., Senchenkova, S.N., Shashkov, A.S., Knirel, Yu.A., and Kaca, W., Structure of a lactic acid ether-containing and glycerol phosphate-containing O-polysaccharide from Proteus mirabilis O40, Carbohydr. Res., 2005, vol. 340, pp. 1612–1617.

    Article  PubMed  CAS  Google Scholar 

  10. Konnova, S.A., Makarov, O.E., Skvortsov, I.M., and Ignatov, V.V., Isolation, fractionation and some properties of polysaccharides produced in a bound form by Azospirillum brasilense and their possible involvement in Azospirillum-wheat root interactions, FEMS Microbiol. Lett., 1994, vol. 118, pp. 93–99.

    Article  CAS  Google Scholar 

  11. Kul’shin, V.A., Yakovlev, A.P., Avaeva, S.N., and Dmitriev, B.A., Improved method for lipopolysaccharide isolation from gram-negative bacteria, Mol. Genet. Mikrobiol. Virusol., 1987, no. 5, pp. 44−46.

  12. Mayer, H., Tharanathan, R.N., and Weckesser, J., Analysis of lipopolysaccharides of Gram-negative bacteria, Methods Microbiol., 1985, vol. 18, pp. 157–207.

    Article  CAS  Google Scholar 

  13. Monteiro, R.A., Balsanelli, E., Tuleski, T., Faoro, H., Cruz, L.M., Wassem, R., de Baura, V.A., Tadra-Sfeir, M.Z., Weiss, V., DaRocha, W.D., Muller-Santos, M., Chubatsu, L.S., Huergo, L.F., Pedrosa, F.O., and de Souza, E.M., Genomic comparison of the endophyte Herbaspirillum seropedicae SmR1 and the phytopathogen Herbaspirillum rubrisubalbicans M1 by suppressive subtractive hybridization and partial genome sequencing, FEMS Microbiol. Ecol., 2012, vol. 80, pp. 441–451.

    Article  PubMed  CAS  Google Scholar 

  14. Naumova, I.B., Shashkov, A.S., Tul’skaya, E.M., Streshinskaya, G.M., Kozlova, Y.I., Potekhina, N.V., Evtushenko, L.I., and Stackebrandt, E., Cell wall teichoic acids: structural diversity, species specificity in the genus Nocardiopsis, and chemotaxonomic perspective, FEMS Microbiol. Rev. 2001, vol. 25, pp. 269–284.

    Article  PubMed  CAS  Google Scholar 

  15. Pedraza, R.O., Recent advances in nitrogen-fixing acetic acid bacteria, Int. J. Food Microbiol., 2008, vol. 125, pp. 25–35.

    Article  PubMed  CAS  Google Scholar 

  16. Perepelov, A.V., Liu, B., Senchenkova, S.N., Shashkov, A.S., Feng, L., Wang, L., and Knirel, Yu.A., Structure of O-antigen and functional characterization of O-antigen gene cluster of Salmonella enterica O47 containing ribitol phosphate and 2-acetimidoylamino-2,6-dideoxy-L-galactose, Biochemistry (Moscow), 2009, vol. 74, pp. 416–420.

    PubMed  CAS  Google Scholar 

  17. Prozorovskii, V.B., Prozorovskaya, M.P., and Devchenko, V.M., Express method for determination of the average effective dose and its erroe, Farmakol. Toksikol., 1978, no. 4, pp. 497–502.

  18. Reinhold-Hurek, B. and Hurek, T., Life in grasses: diazotrophic endophytes, Trends Microbiol., 1998, vol. 139, pp. 139−144.

    Article  Google Scholar 

  19. Sawardeker, J.S., Sloneker, J.H., and Jeanes, A. Quantitative determination of monosaccharides as their alditol acetates by gas liquid chromatography, Anal. Chem., 1965, vol. 37, pp. 1602–1604.

    Article  CAS  Google Scholar 

  20. Schletter, J., Heine, H., Ulmer, A.J., and Rietschel, E.T., Molecular mechanisms of endotoxin activity, Arch. Microbiol., 1995, vol. 164, pp. 383–389.

    Article  PubMed  CAS  Google Scholar 

  21. Serrato, R.V., Balsanelli, E., Sassaki, G.L., Carlson, R.W., Muszynski, A., Monteiro, R.A., Pedrosa, F.O., Souza, E.M., and Iacomini, M., Structural analysis of Herbaspirillum seropedicae lipid A and of two mutants defective to colonize maize roots, Int. J. Biol. Macromol., 2012, vol. 51, pp. 384–391.

    Article  PubMed  CAS  Google Scholar 

  22. Serrato, R.V., Lipopolysaccharides in diazotrophic bacteria, Front. Cell Infect. Microbiol., 2014, vol. 4. 119. doi 10.3389/fcimb.2014.00119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Serrato, R.V., Sassaki, G.L., Cruz, L.M., Carlson, R.W., Muszynski, A., Monteiro, R.A., Pedrosa, F.O., Souza, E.M., and Iacomoni, M., Chemical composition of lipopolysaccharides isolated from various endophytic nitrogen-fixing bacteria of the genus Herbaspirillum, Can. J. Microbiol., 2010, vol. 56, pp. 342−347.

    Article  PubMed  CAS  Google Scholar 

  24. Shashkov, A.S., Wang, M., Turdymuratov, E.M., Hu, Sh., Arbatsky, N.P., Guo, X., Wang, L., and Knirel, Yu.A., Structural and genetic relationships of closely related O‑antigens of Cronobacter spp. and Escherichia coli: C. sakazakii G2594 (serotype O4)/E. coli O103 and C. malonaticus G3864 (serotype O1)/E. coli O29, Carbohydr. Res., 2015, vol. 404, pp. 124−131.

    Article  PubMed  CAS  Google Scholar 

  25. Smol’kina, O.N., Shishonkova, N.S., Yurasov, N.A., and Ignatov, V.V., Capsular and extracellular polysaccharides of the diazotrophic rhizobacterium Herbaspirillum seropedicae Z78, Microbiology (Moscow), 2012, vol. 81, pp. 317–323.

    Article  CAS  Google Scholar 

  26. Tsai, C.M. and Frasch, C.E., A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels, Anal. Biochem., 1982, vol. 119, pp. 115−119.

    Article  PubMed  CAS  Google Scholar 

  27. Varbanets, L.D., Structure and biological role of Mycobacterium, Corynebacterium, and Nocardia polysaccharides, Mikrobiol. Zh., 1988, vol. 50, no. 5, pp. 98–107.

    PubMed  CAS  Google Scholar 

  28. Wu, C.H., Chen, T.L., Chen, T.G., Ho, W.P., Chiu, W.T., and Chen, R.M., Nitric oxide modulates pro- and anti-inflammatory cytokines in lipopolysaccharide-activated macrophages, J. Trauma, 2003, vol. 55, pp. 540–545.

    Article  PubMed  CAS  Google Scholar 

  29. Zdorovenko, E.L., Varbanets, L.D., Brovarskaya, O.S., Valueva, O.A., Shashkov, A.S., and Knirel’, Yu.A., Lipopolysaccharide of Budvicia aquatic 97U124: immunochemical properties and structure, Microbiology (Moscow), 2011, vol. 80, pp. 372–377.

    Article  CAS  Google Scholar 

  30. Zhao, L., Ohtaki, Yu., Yamaguchi, K., Matsushita, M., Fujita, T., Yokochi, T., Takada, H., and Endo, Ya., LPS-induced platelet response and rapid shock in mice: contribution of O-antigen region of LPS and involvement of the lectin pathway of the complement system, Blood, 2002, vol. 100, pp. 3233–3239.

    Article  PubMed  CAS  Google Scholar 

  31. Zych, K., Toukach, F.P., Arbatsky, N.P., Kolodziejska, K., Senchenkova, S.N., Shashkov, A.S., Knirel, Yu.A., and Sidorczyk, Z., Structure of the O-specific polysaccharide of Proteus mirabilis D52 and typing of this strain to Proteus serogroup O33, Eur. J. Biochem., 2001, vol. 268, pp. 4346–4351.

    Article  PubMed  CAS  Google Scholar 

  32. Wu, C.H., Chen, T.L., Chen, T.G., Ho, W.P., Chiu, W.T., and Chen, R.M., Nitric oxide modulates pro- and anti-inflammatory cytokines in lipopolysaccharide-activated macrophages, J. Trauma, 2003, vol. 55, pp. 540–545.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Velichko.

Additional information

Translated by E. Dedyukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velichko, N.S., Surkina, A.K., Fedonenko, Y.P. et al. Structural Peculiarities and Biological Properties of the Lipopolysaccharide from Herbaspirillum seropedicae Z78. Microbiology 87, 635–641 (2018). https://doi.org/10.1134/S002626171805017X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002626171805017X

Keywords:

Navigation