Skip to main content
Log in

Community Structure of Rhizomicrobiomes in Four Medicinal Herbs and Its Implication on Growth Management

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Medicinal plants are the basic materials of traditional Chinese medicine. Soil characteristics and microbial contribution play important roles in the growth and product quality of medicinal plants, but the link between them in the rhizosphere of medicinal plants has been overlooked. Accordingly, Mentha haplocalyx, Perilla frutescens, Glycyrrhiza uralensis, and Astragalus membranaceus, four plants used in traditional Chinese medicines, were investigated in this study in order to elucidate bacterial and arbuscular mycorrhizal fungal (AMF) diversity in the rhizosphere and its possible association with soil quality. DGGE-based 16S rRNA and 18S rRNA gene sequencing results indicated that the diversity of both bacteria and AMF in Glycyrrhiza uralensis and Astragalus membranaceus was significantly higher than those in Mentha haplocalyx and Perilla frutescens, suggesting that medicinal plants have different preferences even under the same conditions. In addition, enzymatic activities and nutrition were enhanced in the rhizospheric soil of Mentha haplocalyx and Perilla frutescens, and the correlation among AMF diversity, soil enzymatic activities and nutrition was confirmed using RDA analysis. These results suggest the potential to grow medicinal plants with a reasonable rotation or intercrop in order to maintain long-term continuous soil development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alef, K. and Nannipieri, P. Methods in Applied Soil Microbiology and Biochemistry, Academic, 1995.

    Google Scholar 

  • Alvarez, M., Huygens, D., Olivares, E., Saavedra, I., Alberdi, M., and Valenzuela, E., Ectomycorrhizal fungi enhance nitrogen and phosphorus nutrition of Nothofagus dombeyi under drought conditions by regulating assimilative enzyme activities, Physiol. Plantarum, 2009, vol. 136, pp. 426–436.

    Article  CAS  Google Scholar 

  • Antoun, H., Beauchamp, C.J., Goussard, N., Chabot, R., and Lalande, R., Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.), Plant Soil, 1998, vol. 204, pp. 57–67.

    Article  CAS  Google Scholar 

  • Benítez, E., Melgar, R., Sainz, H., Gómez, M., and Nogales, R., Enzyme activities in the rhizosphere of pepper (Capsicum annuum L.) grown with olive cake mulches, Soil Biol. Biochem., 2000, vol. 32, pp. 1829–1835.

    Article  Google Scholar 

  • Bernal, G., Illanes, A., and Ciampi, L., Isolation and partial purification of a metabolite from a mutant strain of Bacillus sp. with antibiotic activity against plant pathogenic agents, Electron. J. Biotechn., 2002, vol. 5, pp. 7–8.

    Google Scholar 

  • Borcard, D., Legendre, P., and Drapeau, P., Partialling out the spatial component of ecological variation, Ecology, 1992, vol. 73, pp. 1045–1055.

    Article  Google Scholar 

  • Bowles, T.M., Acosta-Martínez, V., Calderón, F., and Jackson, L.E., Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape, Soil Biol. Biochem., 2014, vol. 68, pp. 252–262.

    Article  CAS  Google Scholar 

  • Breidenbach, B., Pump, J., and Dumont, M.G., Microbial community structure in the rhizosphere of rice plants, Front. Microbiol., 2015, vol. 6.

  • Breuil, C. and Saddler, J.N., Comparison of the 3,5-dinitrosalicylic acid and Nelson-Somogyi methods of assaying for reducing sugars and determining cellulase activity, Enzyme Microb. Tech., 1985, vol. 7, pp. 327–332.

    Article  CAS  Google Scholar 

  • Burke, C., Steinberg, P., Rusch, D., Kjelleberg, S., and Thomas, T., Bacterial community assembly based on functional genes rather than species, Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, pp. 14288–14293.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cassman, N.A., Leite, M.F.A., Pan, Y., Hollander, M.D., Veen, J.A.V., and Kuramae, E.E., Plant and soil fungal but not soil bacterial communities are linked in long-term fertilized grassland, Sci. Rep-UK, 2016, vol. 6.

  • Chang, Z., The discovery of Qinghaosu (artemisinin) as an effective anti-malaria drug: a unique China story, Science China, Life Sci., 2016, vol. 59, pp. 81–88.

    Article  Google Scholar 

  • Diedhiou, P.M., Hallmann, J., Oerke, E.C., and Dehne, H.W., Effects of arbuscular mycorrhizal fungi and a non-pathogenic Fusarium oxysporum on Meloidogyne incognita infestation of tomato, Mycorrhiza, 2003, vol. 13, pp. 199–204.

    Article  PubMed  CAS  Google Scholar 

  • Evelin, H., Kapoor, R., and Giri, B., Arbuscular mycorrhizal fungi in alleviation of salt stress: a review, Ann. Bot.-London, 2009, vol. 104, pp. 1263–1280.

    Article  CAS  Google Scholar 

  • Fierer, N., and Jackson, R.B., The diversity and biogeography of soil bacterial communities, Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, pp. 626–631.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao, J., Wang, Y., Guan, Y.M., and Chen, C.Q., Fusarium cerealis, a new pathogen causing ginseng (Panax ginseng) root rot in China, Plant Dis., 2014, vol. 98, pp. 1433–1433.

    Article  Google Scholar 

  • Govindarajulu, M., Pfeffer, P.E., Jin, H., Abubaker, J., Douds, D.D., Allen, J.W., Bucking, H., Lammers, P.J., and Shachar-Hill, Y., Nitrogen transfer in the arbuscular mycorrhizal symbiosis, Nature, 2005, vol. 435, pp. 819–823.

    Article  PubMed  CAS  Google Scholar 

  • Jian, S., Li, J., Chen, J., Wang, G., Mayes, M.A., Dzantor, K.E., Hui, D., and Luo, Y., Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: a meta-analysis, Soil Biol. Biochem., 2016, vol. 101, pp. 32–43.

    Article  CAS  Google Scholar 

  • Kandeler, E. and Gerber, H., Short-term assay of soil urease activity using colorimetric determination of ammonium, Biol. Fert. Soils, 1988, vol. 6, pp. 68–72.

    Article  CAS  Google Scholar 

  • Kang, R., Helms, R., Stout, M.J., Jaber, H., Chen, Z., and Nakatsu, T., Antimicrobial activity of the volatile constituents of Perilla frutescens and its synergistic effects with polygodial, J. Agr. Food Chem., 1992, vol. 40, pp. 2328–2330.

    Article  CAS  Google Scholar 

  • Kim, H. and Kang, H., The impacts of excessive nitrogen additions on enzyme activities and nutrient leaching in two contrasting forest soils, J. Microbiol. (Seoul, Korea), 2011, vol. 49, pp. 369–375.

    Google Scholar 

  • Kong, L.Y. and Tan, R.X., Artemisinin, a miracle of traditional Chinese medicine, Nat. Prod. Rep., 2015, vol. 32, pp. 1617–1621.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y., Liu, Z., Hou, H., Lei, H., Zhu, X., Li, X., He, X., and Tian, C., Arbuscular mycorrhizal fungi-enhanced resistance against Phytophthora sojae infection on soybean leaves is mediated by a network involving hydrogen peroxide, jasmonic acid, and the metabolism of carbon and nitrogen, Acta Physiol. Plant., 2013, vol. 35, pp. 3465–3475.

    Article  CAS  Google Scholar 

  • Liu, Z., Li, Y., Ma, L., Wei, H., Zhang, J., He, X., and Tian, C., Coordinated regulation of arbuscular mycorrhizal fungi and soybean MAPK pathway genes improved mycorrhizal soybean drought tolerance, Mol. Plant Microbe In., 2015, vol. 48, pp. 408–419.

    Article  CAS  Google Scholar 

  • Liu, Z., Ma, L., He, X., and Tian, C., Water strategy of mycorrhizal rice at low temperature through the regulation of PIP aquaporins with the involvement of trehalose, Appl. Soil Ecol., 2014b, vol. 84, pp. 185–191.

    Article  Google Scholar 

  • Luo, H.F., Qi, H.Y., and Zhang, H.X., Assessment of the bacterial diversity in fenvalerate-treated soil, World J. Microb. Biot., 2004, vol. 20, pp. 509–515.

    Article  CAS  Google Scholar 

  • McArdle, B.H. and Anderson, M.J., Fitting multivariate models to community data: a comment on distance-based redundancy analysis, Ecology, 2001, vol. 82, pp. 290–297.

    Article  Google Scholar 

  • McGowan, S., Leavitt, P.R., Hall, R.I., Anderson, N.J., Jeppesen, E., and Odgaard, B.V., Controls of algal abundance and community composition during ecosystem state change, Ecology, 2005, vol. 86, pp. 2200–2211.

    Article  Google Scholar 

  • Meng L.J., Geng Z.C., Wang H.T., Yin J.Y., and Ji P.F., Soil chemical properties and enzyme activities of three traditional Chinese herbal drugs in the rhizosphere and nonrhizosphere on the east section of Qilian mountain, J. Northwest For. U., 2013, vol. 28, pp. 26–32. (in Chinese)

    Google Scholar 

  • Moonseong, H., and Ruben Gabriel, K., A permutation test of association between configurations by means of the rv coefficient, Communications in Statistics—Simulation and Computation, 1998, vol. 27, pp. 843–856.

    Article  Google Scholar 

  • Normile, D., Asian medicine. The new face of traditional Chinese medicine, Science, 2003, vol. 299, pp. 188–190.

    Article  PubMed  CAS  Google Scholar 

  • Nuccio, E.E., Hodge, A., Pett-Ridge, J., Herman, D.J., Weber, P.K., and Firestone, M.K., An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition, Environ. Microbiol., 2013, vol. 15, pp. 1870–1881.

    Article  PubMed  CAS  Google Scholar 

  • Oksanen, J., Kindt, R., and O’Hara, B., Vegan: R functions for vegetation ecologists, 2005, vol. 12, p. 2014.

    Google Scholar 

  • Phillips, R.P., Brzostek, E., and Midgley, M.G., The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests, New Phytol., 2013, vol. 199, pp. 41–51.

    Article  PubMed  CAS  Google Scholar 

  • Pukall, R., Buntefuss, D., Frühling, A., Rohde, M., Kroppenstedt, R.M., Burghardt, J., Lebaron, P., Bernard, L., and Stackebrandt, E., Sulfitobacter mediterraneus sp. nov., a new sulfite-oxidizing member of the alpha-Proteobacteria, Int. J. Syst. Bacteriol., 1999, vol. 49, pp. 513–519.

    Article  PubMed  CAS  Google Scholar 

  • Punja, Z.K., Wan, A., Rahman, M., Goswami, R.S., Barasubiye, T., Seifert, K.A., and Lévesque, C.A., Growth, population dynamics, and diversity of Fusarium equiseti in ginseng fields, Eur. J. Plant Pathol., 2008, vol. 121, pp. 173–184.

    Article  CAS  Google Scholar 

  • Qian, X., Gu, J., Pan, H.-J., Zhang, K.-Y., Sun, W., Wang, X.-J., and Gao, H., Effects of living mulches on the soil nutrient contents, enzyme activities, and bacterial community diversities of apple orchard soils, Eur. J. Soil Biol., 2015, vol. 70, pp. 23–30.

    Article  CAS  Google Scholar 

  • Qiao, X., Bei, S., Li, C., Dong, Y., Li, H., Christie, P., Zhang, F., and Zhang, J., Enhancement of faba bean competitive ability by arbuscular mycorrhizal fungi is highly correlated with dynamic nutrient acquisition by competing wheat, Sci. Rep-UK, 2015, vol. 5.

  • Qin, S., Chen, H.H., Zhao, G.Z., Li, J., Zhu, W.Y., Xu, L.H., Jiang, J.H., and Li, W.J., Abundant and diverse endophytic actinobacteria associated with medicinal plant Maytenus austroyunnanensis in Xishuangbanna tropical rainforest revealed by culture-dependent and culture-independent methods, Env. Microbiol. Rep., 2012, vol. 4, pp. 522–531.

    Article  Google Scholar 

  • Redecker, D., and Raab, P., Phylogeny of the glomeromycota (arbuscular mycorrhizal fungi): recent developments and new gene markers, Mycologia, 2006, vol. 98, pp. 885–895.

    Article  PubMed  Google Scholar 

  • Ren, C., Kang, D., Wu, J.P., Zhao, F., Yang, G., Han, X., Feng, Y., and Ren, G., Temporal variation in soil enzyme activities after afforestation in the Loess Plateau, China, Geoderma, 2016, vol. 282, pp. 103–111.

    Article  CAS  Google Scholar 

  • Rosenberg, E. and Zilber-Rosenberg, I., Role of microorganisms in adaptation, development, and evolution of animals and plants: the hologenome concept, in The Prokaryotes: Prokaryotic Biology and Symbiotic Associations, Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., and Thompson, F., Eds., Berlin: Springer, 2013.

    Google Scholar 

  • Söderberg, K.H., Olsson, P.A., and Bååth, E., Structure and activity of the bacterial community in the rhizosphere of different plant species and the effect of arbuscular mycorrhizal colonisation, FEMS Microbiol. Ecol., 2002, vol. 40, pp. 223–231.

    Article  PubMed  Google Scholar 

  • Schinner, F., Öhlinger, R., Kandeler, E., and Margesin, R., Methods in Soil Biology, Berlin: Springer, 1996.

    Book  Google Scholar 

  • Schlatter, D.C., Bakker, M.G., Bradeen, J.M., and Kinkel, L.L., Plant community richness and microbial interactions structure bacterial communities in soil, Ecology, 2015, vol. 96, pp. 134–142.

    Article  PubMed  Google Scholar 

  • Sun, S., Li, H., Zhou, W., Liu, A., and Zhu, H., Bacterial quorum sensing inhibition activity of the traditional Chinese herbs, Ficus carica L. and Perilla frutescens, Chemotherapy, 2015, vol. 60, pp. 379–383.

    Google Scholar 

  • Tabatabai, M.A. and Bremner, J.M., Use of p-nitrophenyl phosphate for assay of soil phosphatase activity, Soil Biol. Biochem., 1969, vol. 1, pp. 301–307.

    Article  CAS  Google Scholar 

  • Tian, L., Zhou, X., Ma, L., Xu, S., Nasir, F., and Tian, C., Root-associated bacterial diversities of Oryza rufipogon and Oryza sativa and their influencing environmental factors, Arch. Microbiol., 2016, vol. 199, pp. 563–571.

    Article  PubMed  CAS  Google Scholar 

  • Verbruggen, E., Veresoglou, S.D., Anderson, I.C., Caruso, T., Hammer, E.C., Kohler, J., and Rillig, M.C., Arbuscular mycorrhizal fungi–short-term liability but longterm benefits for soil carbon storage?, New Phytol., 2013, vol. 197, pp. 366–368.

    Article  PubMed  Google Scholar 

  • Wang, G., Zhang, J., Wang, L., Liang, B., Chen, K., Li, S., and Jiang, J., Co-metabolism of DDT by the newly isolated bacterium, Pseudoxanthomonas sp. wax, Braz. J. Microbiol., 2010, vol. 41, pp. 431–438.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L., Zheng, C.D., Li, X.J., Gao, J.M., Zhang, X.C., and Wei, G.H., Cyclo(PRO-TYR) from an endophytic rhizobium isolated from Glycyrrhiza uralensis, Chem. Nat. Compd+, 2012, vol. 47, pp. 1040–1042.

    Article  CAS  Google Scholar 

  • Wang, W., Wu, N., Fu, Y., and Zu, Y., Antimicrobial activities of Mentha haplocalyx Briq. essential oil, Bull. Bot. Res., 2007, vol. 27, pp. 626–629.

    Google Scholar 

  • Weiss, J.V., Emerson, D., and Megonigal, J.P., Geochemical control of microbial Fe(III) reduction potential in wetlands: comparison of the rhizosphere to non-rhizosphere soil, FEMS Microbiol. Ecol., 2004, vol. 48, pp. 89–100.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, G.Z. and Zhang, H.W., First report of root rot of American ginseng (Panax quinquefolium) caused by Ditylenchus destructor in China, Plant Dis., 2007, vol. 91, pp. 459–459.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, S., Tian, L., Ma, L. et al. Community Structure of Rhizomicrobiomes in Four Medicinal Herbs and Its Implication on Growth Management. Microbiology 87, 425–436 (2018). https://doi.org/10.1134/S0026261718030098

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261718030098

Keywords

Navigation