Skip to main content
Log in

Effect of ferric sulfate on activity of moderately thermophilic acidophilic iron-oxidizing microorganisms

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The effect of high ferric sulfate concentrations on the organisms predominating in biohydrometallurgical processes (bacteria of genus Sulfobaсillus and archaea of the genus Acidiplasma) was studied. Ability of the studied strains to grow and oxidize ferrous iron in the media with 125 to 500 mM ferric sulfate was determined. High concentrations of ferric sulfate significantly inhibited the oxidative activity and growth of the studied microorganisms. Bacteria of the genus Sulfobaсillus were found to be incapable of active iron oxidation in the presence of ferric iron sulfate at concentrations exceeding 250 mM. Archaea of the genus Acidiplasma oxidized ferrous iron completely in the presence of 500 mM Fe3+. Microbial growth was suppressed by relatively low ferric sulfate concentrations. Almost no growth occurred at ferric sulfate concentrations exceeding 199 mM, while lysis of the cells of all studied strains was observed at higher Fe3+ concentrations. Archaea (genus Acidiplasma, family Ferroplasmaceae) were shown to be more tolerant to high ferric sulfate concentrations than bacteria of the genus Sulfobaсillus. The results obtained may be used for improvement of biohydrometallurgical technologies and are also important for the understanding of the patterns of formation of microbial communities carrying out the technological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bond, P.L., Druschel, G.K., and Banfield, J.F., Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems, Appl. Environ. Microbiol., 2000, vol. 66, pp. 4962–4971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun, V. and Hantke, K., Acquisition of iron by bacteria, in Molecular Microbiology of Heavy Metals, Nies, D.H. and Silver, S., Eds., Berlin: Springer, 2007, pp. 189–219.

    Chapter  Google Scholar 

  • Bryan, C.G., Watkin, E.L., McCredden, T.J., Wong, Z.R., Harrison, S.T.L., and Kaksonen, A.H., The use of pyrite as a source of lixiviant in the bioleaching of electronic waste, Hydrometallurgy, 2015, vol. 152, pp. 33–43.

    Article  CAS  Google Scholar 

  • Bulaev, A.G., Ferrous iron oxidation in packed-bed reactors at elevated temperatures, Adv. Mater. Res., 2015, vol. 1130, pp. 226–229.

    Article  Google Scholar 

  • Bulaev, A.G., Muravyov, M.I., Pivovarova, T.A., Fomchenko, N.V., and Kondrat’eva, T.F., The treatment of mining and metallurgical wastes containing nonferrous and precious metals, Adv. Mater. Res., 2013, vol. 825, pp. 301–304.

    Article  Google Scholar 

  • Cardenas, J.P., Moya, F., Covarrubias, P., Shmaryahu, A., Levicán, G., Holmes, D.S., and Quatrini, R., Comparative genomics of the oxidative stress response in bioleaching microorganisms, Hydrometallurgy, 2012, vol. 127–128, pp. 162–167.

    Google Scholar 

  • Clark, D.A. and Norris, P.R., Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed-culture ferrous iron oxidation with Sulfobacillus species, Microbiology (UK), 1996, vol. 142, pp. 785–790.

    Article  CAS  Google Scholar 

  • Dopson, M. and Holmes, D.S., Metal resistance in acidophilic microorganisms and its significance for biotechnologies, Appl. Microbiol. Biotechnol., 2014, vol. 98. pp. 8133–8144.

    Google Scholar 

  • Dopson, M., Baker-Austin, C., Koppineedi, P.R., and Bond, P.L., Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic microorganisms, Microbiology (UK), 2003, vol. 149, pp. 1959–1970.

    Article  CAS  Google Scholar 

  • Golyshina, O.V. and Timmis, K.N., Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments, Environ. Microbiol., 2005, vol. 7, pp. 1277–1288.

    Article  CAS  PubMed  Google Scholar 

  • Guezennec, A.-G., Bru, K., Jacob, J., and d’Hugues P., Co-processing of sulfidic mining wastes and metal-rich post-consumer wastes by biohydrometallurgy, Minerals Eng., 2015, vol. 75, pp. 45–53.

    Article  CAS  Google Scholar 

  • Hawkes, R.B., Franzmann, P.D., O’Hara, G., and Plumb, J.J., Ferroplasma cupricumulans sp. nov., a novel moderately thermophilic, acidophilic archaea isolated from an industrial-scale chalcocite bioleach heap, Extremophiles, 2006, vol. 10, pp. 525–530.

    Article  CAS  PubMed  Google Scholar 

  • Kondrat’eva, T.F., Bulaev, A.G., and Muravyov, M.I., Mikroorganizmy v biogeotekhnologiyakh pererabotki sulfidnykh rud (Microorganisms in Biotechnologies of Sulfide Ores Processing), Moscow: Nauka, 2015.

    Google Scholar 

  • Li, Q., Tian, Y., Fu, X., Yin, H., Zhou, Z., Liang, Y., Qiu, G., Liu, J., Liu, H., Liang, Y., Shen, L., Cong, J., and Liu, X., The community dynamics of major bioleaching microorganisms during chalcopyrite leaching under the effect of organics, Curr. Microbiol., 2011, vol. 63, pp. 164–172.

    Article  CAS  PubMed  Google Scholar 

  • Melamud, V.S. and Pivovarova, T.A., Specific features of the growth of the type strain of Sulfobacillus thermosulfidooxidans in medium 9K, Appl. Biochem. Microbiol., 1998, vol. 34, pp. 314–315.

    Google Scholar 

  • Muravyov, M.I. and Bulaev, A.G., Two-step oxidation of a refractory gold-bearing sulfidic concentrate and the effect of organic nutrients on its biooxidation, Minerals Eng., 2013, vol. 45, pp. 108–114.

    Article  CAS  Google Scholar 

  • Muravyov, M.I., Bulaev, A.G., and Kondrat’eva, T.F., Complex treatment of mining and metallurgical wastes for recovery of base metals, Minerals Eng., 2014, vol. 64, pp. 63–66.

    Article  CAS  Google Scholar 

  • Rawlings, D.E., Tributsch, H., and Hansford, G., Reasons why “Leptospirillum”-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores, Microbiology (UK), 1999, vol. 145, pp. 5–13.

    Article  CAS  Google Scholar 

  • Rea, S.M., McSweeney, N.J., Degens, B.P., Morrisa, C., Siebert, H.M., and Kaksonen, A.H., Salt-tolerant microorganisms potentially useful for bioleaching operations where fresh water is scarce, Minerals Eng., 2015, vol. 75, pp. 126–132.

    Article  CAS  Google Scholar 

  • Reznikov, A.A., Mulikovskaya, E.P., and Sokolov I.Yu., Metody analiza prirodnykh vod (Methods for Analysis of Natural Waters), Moscow: Nedra, 1970.

    Google Scholar 

  • Romero, R., Mazuelos, A., Palencia, I., and Carranza, F., Copper recovery from chalcopyrite concentrates by BRISA process, Hydrometallurgy, 2003, vol. 70, pp. 205–215.

    Article  CAS  Google Scholar 

  • Sand, W., Gehrke, T., Jozsa, P.-G., and Schippers, A. (Bio)chemistry of bacterial leaching—direct vs. indirect bioleaching, Hydrometallurgy, 2001, vol. 59, pp. 159–175.

    Article  CAS  Google Scholar 

  • Schippers, A., Microorganisms involved in bioleaching and nucleic acid-based molecular methods for their identification and quantification, in Microbial Processing of Metal Sulfides, Donati, E.R. and Sand, W., Eds., New York: Springer, 2007, pp. 3–33.

    Chapter  Google Scholar 

  • Suzuki, I., Lee, D., Mackay, B., Harahuc, L., and Oh, J.K., Effect of various ions, pH, and osmotic pressure on oxidation of elemental sulfur by Thiobacillus thiooxidans, Appl. Environ. Microbiol., 1999, vol. 65, pp. 5163–5168.

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Hille, R.P., van Wyk, N., Froneman, T., and Harrison, S.T.L., Dynamic evolution of the microbial community in BIOX leaching tanks, Adv. Mater. Res., 2013, vol. 825, pp. 331–334.

    Article  Google Scholar 

  • Watling, H.R., Watkin, E.J.L., and Ralph, D.E., The resilience and versatility of acidophiles that contribute to the bio-assisted extraction of metals from mineral sulfides, Environ. Technol., 2010, vol. 31, nos. 8–9, pp. 915–933.

    Article  CAS  Google Scholar 

  • Zhou, H., Zhang, R., Hu, P., Zeng, W., Xie, Y., Wu, C., and Qiu, G., Isolation and characterization of Ferroplasma thermophilum sp. nov., a novel extremely acidophilic, moderately thermophilic archaeon and its role in bioleaching of chalcopyrite, J. Appl. Microbiol., 2008, vol. 105, pp. 591–601.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Bulaev.

Additional information

Original Russian Text © A.G. Bulaev, 2017, published in Mikrobiologiya, 2017, Vol. 86, No. 4, pp. 455–462.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulaev, A.G. Effect of ferric sulfate on activity of moderately thermophilic acidophilic iron-oxidizing microorganisms. Microbiology 86, 469–475 (2017). https://doi.org/10.1134/S002626171704004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002626171704004X

Keywords

Navigation