Skip to main content
Log in

Genetic mechanisms of bacilli adaptation

  • Reviews
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Adaptive strategies of bacilli involving genetic regulatory mechanisms are reviewed. The role of master regulators and signal transduction systems that coordinate the interaction of the extracellular signals and the genetic programs responsible for the metabolic state of bacteria are discussed. Most of the known regulatory pathways are directly or indirectly regulated by the DegU, Spo0A, AbrB, and CodY global regulators. The main factor affecting the development of cell phenotype is the concentration of the regulatory protein and its ability to bind with varying affinity to promoters of the genes and operons. The effect of the regulatory systems on the bistability of microbial populations is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maamar, H., Raj, A., and Dubnau, D., Noise in gene expression determines cell fate in Bacillus subtilis, Science, 2007, vol. 317, no. 5837, pp. 526–529.

    Article  PubMed  CAS  Google Scholar 

  2. Colledge, V.L., Fogg, M.J., Levdikov, V.M., Leech, A., Dodson, E.J., and Wilkinson, A.J., Structure and organisation of SinR, the master regulator of biofilm formation in Bacillus subtilis, J. Mol. Biol., 2011, vol. 411, no. 3, pp. 597–613.

    Article  PubMed  CAS  Google Scholar 

  3. Verhamme, D.T., Kiley, T.B., and Stanley-Wall, N.R., DegU co-ordinates multicellular behaviour exhibited by Bacillus subtilis, Mol. Microbiol., 2007, vol. 65, no. 2, pp. 554–568.

    Article  PubMed  CAS  Google Scholar 

  4. Fujita, M., Gonzalez-Pastor, J.E., and Losick, R., High- and low-threshold genes in the Spo0a regulon of Bacillus subtilis, J. Bacteriol., 2005, vol. 187, no. 4, pp. 1357–1368.

    Article  PubMed  CAS  Google Scholar 

  5. Heermann, R. and Jung, K., Stimulus perception and signaling in histidine kinases, in Bacterial Signaling, Krämer, R. and Jung, K, Eds., Wiley-VCH, 2009, pp. 135–161.

    Chapter  Google Scholar 

  6. Utsumi, R. and Igarashi, M., Two-component signal transduction as attractive drug targets in pathogenic bacteria, Yakugaku Zasshi, 2012, vol. 132, no. 1, pp. 51–58.

    Article  PubMed  CAS  Google Scholar 

  7. Stock, A.M., Robinson, V.L., and Goudreau, P.N., Two-component signal transduction, Annu. Rev. Biochem., 2000, vol. 69, pp. 183–215.

    Article  PubMed  CAS  Google Scholar 

  8. Shi, X., Wegener-Feldbrügge, S., Huntley, S., Hamann, N., Hedderich, R., and Søgaard-Andersen, L., Bioinformatics and experimental analysis of proteins of two-component systems in Myxococcus xanthus, J. Bacteriol., 2008, vol. 190, no. 1, p. 613–624.

    Google Scholar 

  9. Thevenard, B., Rasoava, N., Fourcassié, P., Monnet, V., Boyaval, P., and Rul, F., Characterization of Streptococcus thermophilus two-component systems: in silico analysis, functional analysis and expression of response regulator genes in pure or mixed culture with its yogurt partner, Lactobacillus delbrueckii subsp. bulgaricus, Int. J. Food Microbiol., 2011, vol. 151, no. 2, pp. 171–181.

    Article  PubMed  CAS  Google Scholar 

  10. Gueriri, I., Cyncynatus, C., Dubrac, S., Arana, A.T., Dussurget, O., and Msadek, T., The DegU orphan response regulator of Listeria monocytogenes autorepresses its own synthesis and is required for bacterial motility, virulence and biofilm formation, Microbiology (UK), 2008, vol. 154, no. 8, pp. 2251–2264.

    Article  CAS  Google Scholar 

  11. Jung, K., Fried, L., Behr, S., and Heermann, R., Histidine kinases and response regulators in networks, Curr. Opin. Microbiol., 2012, vol. 15, no. 2, pp. 118–124.

    Article  PubMed  CAS  Google Scholar 

  12. Mäder, U., Antelmann, H., Buder, T., Dahl, M.K., Hecker, M., and Homuth, G., Bacillus subtilis functional genomics: genome-wide analysis of the DegS-DegU regulon by transcriptomics and proteomics, Mol. Genet. Genomics, 2002, vol. 268, no. 4, pp. 455–467.

    Article  PubMed  Google Scholar 

  13. Henner, D.J., Yang, M., and Ferrari, E., Localization of Bacillus subtilis sacU(Hy) mutations to two linked genes with similarities to the conserved procaryotic family of two-component signalling systems, J. Bacteriol., 1988, vol. 170, no. 11, pp. 5102–5109.

    PubMed  CAS  Google Scholar 

  14. Borgmeier, C., Biedendieck, R., Hoffmann, K., Jahn, D., and Meinhardt, F., Transcriptome profiling of degU expression reveals unexpected regulatory patterns in Bacillus megaterium and discloses new targets for optimizing expression, Appl. Microbiol. Biotechnol., 2011, vol. 92, no. 3, pp. 583–596.

    Article  PubMed  CAS  Google Scholar 

  15. Wray, L.V., Jr., Zalieckas, J.M., and Fisher, S.H., Bacillus subtilis glutamine synthetase controls gene expression through a protein-protein interaction with transcription factor TnrA, Cell, 2001, vol. 107, no. 4, p. 427.

    Article  Google Scholar 

  16. Kayumov, A., Heinrich, A., Sharipova, M., Iljinskaya, O., and Forchhammer, K., Inactivation of the general transcription factor TnrA in Bacillus subtilis by proteolysis, Microbiology (UK), 2008, vol. 154, no. 8, pp. 2348–2355.

    Article  CAS  Google Scholar 

  17. Abe, S., Yasumura, A., and Tanaka, T., Regulation of Bacillus subtilis aprE expression by glnA through inhibition of scoC and sigma(D)-dependent degR expression, J. Bacteriol., 2009, vol. 191, no. 9, pp. 3050–3058.

    Article  PubMed  CAS  Google Scholar 

  18. Tjalsma, H., Koetje, E.J., Kiewiet, R., Kuipers, O.P., Kolkman, M., van der Laan, J., Daskin, R., Ferrari, E., and Bron, S., Engineering of quorum-sensing systems for improved production of alkaline protease by Bacillus subtilis, J. Appl. Microbiol., 2004, vol. 96, no. 3, pp. 569–578.

    Article  PubMed  CAS  Google Scholar 

  19. Kobayashi, K., Gradual activation of the response regulator DegU controls serial expression of genes for flagellum formation and biofilm formation in Bacillus subtilis, Mol. Microbiol., 2007, vol. 66, no. 2, pp. 395–409.

    Article  PubMed  CAS  Google Scholar 

  20. Ogura, M. and Tsukahara, K., Autoregulation of the Bacillus subtilis response regulator gene degU is coupled with the proteolysis of DegU-P by ClpCP, Mol. Microbiol., 2010, vol. 75, no. 5, pp. 1244–1259.

    Article  PubMed  CAS  Google Scholar 

  21. Gueriri, I., Bay, S., Dubrac, S., Cyncynatus, C., and Msadek, T., The Pta-AckA pathway controlling acetyl phosphate levels and the phosphorylation state of the DegU orphan response regulator both play a role in regulating Listeria monocytogenes motility and chemotaxis, Mol. Microbiol., 2008, vol. 70, no. 6, pp. 1342–1357.

    Article  PubMed  CAS  Google Scholar 

  22. Tsukahara, K. and Ogura, M., Promoter selectivity of the Bacillus subtilis response regulator DegU, a positive regulator of the fla/che operon and sacB, BMC Microbiol., 2008, vol. 15, no. 8, p. 8.

    Article  Google Scholar 

  23. Tsukahara, K. and Ogura, M., Characterization of DegU-dependent expression of bpr in Bacillus subtilis, FEMS Microbiol. Lett., 2008, vol. 280, no. 1, pp. 8–13.

    Article  PubMed  CAS  Google Scholar 

  24. Shimane, K. and Ogura, M., Mutational analysis of the helix-turn-helix region of Bacillus subtilis response regulator DegU, and identification of cis-acting sequences for DegU in the aprE and comK promoters, J. Biochem., 2004, vol. 136, no. 3, pp. 387–397.

    Article  PubMed  CAS  Google Scholar 

  25. West, J.T., Estacio, W., and Márquez-Magan~a, L. Relative roles of the fla/che P(A), P(D-3), and P(sigD) promoters in regulating motility and sigD Expression in Bacillus subtilis, J. Bacteriol., 2000, vol. 182, no. 17, pp. 4841–4848.

    Article  PubMed  CAS  Google Scholar 

  26. Cozy, L.M., Phillips, A.M., Calvo, R.A., Bate, A.R., Hsueh, Y.H., Bonneau, R., Eichenberger, P., and Kearns, D.B., SlrA/SinR/SlrR inhibits motility gene expression upstream of a hypersensitive and hysteretic switch at the level of σ(D) in Bacillus subtilis, Mol. Microbiol., 2012, vol. 83, no. 6, pp. 1210–1228.

    Article  PubMed  CAS  Google Scholar 

  27. Chai, Y., Chu, F., Kolter, R., and Losick, R., Bistability and biofilm formation in Bacillus subtilis, Mol. Microbiol., 2008, vol. 67, no. 2, pp. 254–263.

    Article  PubMed  CAS  Google Scholar 

  28. Diethmaier, C., Pietack, N., Gunka, K., Wrede, C., Lehnik-Habrink, M., Herzberg, C., Hübner, S., and Stülke, J., A novel factor controlling bistability in Bacillus subtilis: the YmdB protein affects flagellin expression and biofilm formation, J. Bacteriol., 2011, vol. 193, no. 21, pp. 5997–6007.

    Article  PubMed  CAS  Google Scholar 

  29. Msadek, T., When the going gets tough: survival strategies and environmental signaling networks in Bacillus subtilis, Trends Microbiol., 1999, vol. 7, no. 5, pp. 201–207.

    Article  PubMed  CAS  Google Scholar 

  30. Kayumov, A.R., Balaban, N.P., Mardanova, A.M., Sharipova, M.R., and Kostrov, S.V., Biosynthesis of the subtilisin-like serine proteinase of Bacillus intermedius under salt stress conditions, Microbiology, 2006, vol. 75, no. 5, pp. 557–562.

    Article  CAS  Google Scholar 

  31. Shagimardanova, E.I., Chastukhina, I.B., Shamsutdinov, T.R., Balaban, N.P., Mardanova, A.M., Sharipova, M.R., and Kostrov, S.V., Heterologous expression of Bacillus intermedius gene of glutamyl endopeptidase in Bacillus subtilis strains defective in regulatory proteins, Microbiology, 2007, vol. 76, no. 5, pp. 569–574.

    Article  CAS  Google Scholar 

  32. Kodgire, P., Dixit, M., and Rao, K.K., ScoC and SinR negatively regulate epr by corepression in Bacillus subtilis, J. Bacteriol., 2006, vol. 188, no. 17, pp. 6425–6428.

    Article  PubMed  CAS  Google Scholar 

  33. Westers, H., Westers, L., Darmon, E., van Dijl, J.M., Quax, W.J., and Zanen, G., The CssRS two-component regulatory system controls a general secretion stress response in Bacillus subtilis, FEBS J., 2006, vol. 273, no. 16, pp. 3816–3827.

    Article  PubMed  CAS  Google Scholar 

  34. Antelmann, H., Darmon, E., Noone, D., Veening, J.W., Westers, H., Bron, S., Kuipers, O.P., Devine, K.M., Hecker, M., and van Dijl, J.M., The extracellular proteome of Bacillus subtilis under secretion stress conditions, Mol. Microbiol., 2003, vol. 49, no. 1, pp. 143–156.

    Article  PubMed  CAS  Google Scholar 

  35. Noone, D., Howell, A., Collery, R., and Devine, K.M., YkdA and YvtA, HtrA-like serine proteases in Bacillus subtilis, engage in negative autoregulation and reciprocal cross-regulation of ykdA and yvtA gene expression, J. Bacteriol., 2001, vol. 183, no. 2, pp. 654–663.

    Article  PubMed  CAS  Google Scholar 

  36. Fujita, M. and Losick, R., Evidence that entry into sporulation in Bacillus subtilis is governed by a gradual increase in the level and activity of the master regulator Spo0A, Genes Dev., 2005, vol. 19, no. 18, pp. 2236–2244.

    Article  PubMed  CAS  Google Scholar 

  37. Eswaramoorthy, P., Dinh, J., Duan, D., Igoshin, O.A., and Fujita, M., Single-cell measurement of the levels and distributions of the phosphorelay components in a population of sporulating Bacillus subtilis cells, Microbiology (UK), 2010, vol. 156, no.8, pp. 2294–2304.

    Article  CAS  Google Scholar 

  38. Lopez, D., Fischbach, M.A., Chu, F., Losick, R., and Kolter, R., Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis, Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, no. 1, pp. 280–285.

    Article  PubMed  CAS  Google Scholar 

  39. Reder, A., Gerth, U., and Hecker, M., Integration of σB activity into the decision-making process of sporulation initiation in Bacillus subtilis, J. Bacteriol., 2012, vol. 194, no. 5, pp. 1065–1074.

    Article  PubMed  CAS  Google Scholar 

  40. Fujita, M. and Losick, R., The master regulator for entry into sporulation in Bacillus subtilis becomes a cell-specific transcription factor after asymmetric division, Genes Dev., 2003, vol. 17, no. 9, pp. 1166–1174.

    Article  PubMed  CAS  Google Scholar 

  41. Guberman, J.M., Fay, A., Dworkin, J., Wingreen, N.S., and Gitai, Z., PSICIC: noise and asymmetry in bacterial division revealed by computational image analysis at sub-pixel resolution, PLoS Comput. Biol., 2008, vol. 4, no. 11, p. e1000233.

    Article  PubMed  Google Scholar 

  42. de Hoon, M.J., Eichenberger, P., and Vitkup, D., Hierarchical evolution of the bacterial sporulation network, Curr. Biol., 2010, vol. 20, no. 17, pp. R735–R745.

    Article  PubMed  Google Scholar 

  43. Molle, V., Fujita, M., Jensen, S.T., Eichenberger, P., González-Pastor, J.E., Liu, J.S., and Losick, R., The Spo0A regulon of Bacillus subtilis, Mol. Microbiol., 2003, vol. 50, no. 5, pp. 1683–1701.

    Article  PubMed  CAS  Google Scholar 

  44. Chastanet, A. and Losick, R., Just-in-time control of Spo0A synthesis in Bacillus subtilis by multiple regulatory mechanisms, J. Bacteriol., 2011, vol. 193, no. 22, pp. 6366–6374.

    Article  PubMed  CAS  Google Scholar 

  45. Muchová, K., Lewis, R.J., Perecko, D., Brannigan, J.A., Ladds, J.C., Leech, A., Wilkinson, A.J., and Barák, I., Dimer-induced signal propagation in Spo0A, Mol. Microbiol., 2004, vol. 53, no. 3, pp. 829–842.

    Article  PubMed  Google Scholar 

  46. Banse, A.V., Chastanet, A., Rahn-Lee, L., Hobbs, E.C., and Losick, R., Parallel pathways of repression and antirepression governing the transition to stationary phase in Bacillus subtilis, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, no. 40, pp. 15547–15552.

    Article  PubMed  CAS  Google Scholar 

  47. Bobay, B.G., Andreeva, A., Mueller, G.A., Cavanagh, J., and Murzin, A.G., Revised structure of the AbrB N-terminal domain unifies a diverse superfamily of putative DNA-binding proteins, FEBS Lett., 2005, vol. 579, no. 25, pp. 5669–5674.

    Article  PubMed  CAS  Google Scholar 

  48. Lieman-Hurwitz, J., Haimovich, M., Shalev-Malul, G., Ishii, A., Hihara, Y., Gaathon, A., Lebendiker, M., and Kaplan, A., A cyanobacterial AbrB-like protein affects the apparent photosynthetic affinity for CO2 by modulating low-CO2-induced gene expression, Environ. Microbiol., 2009, vol. 11, no. 4, pp. 927–936.

    Article  PubMed  CAS  Google Scholar 

  49. Chumsakul, O., Takahashi, H., Oshima, T., Hishimoto, T., Kanaya, S., Ogasawara, N., and Ishikawa, S., Genome-wide binding profiles of the Bacillus subtilis transition state regulator AbrB and its homolog Abh reveals their interactive role in transcriptional regulation, Nucleic Acids Res., 2011, vol. 39, no. 2, pp. 414–428.

    Article  PubMed  CAS  Google Scholar 

  50. Shivers, R.P. and Sonenshein, A.L., Activation of the Bacillus subtilis global regulator CodY by direct interaction with branched-chain amino acids, Mol. Microbiol., 2004, vol. 53, no. 2, pp. 599–611.

    Article  PubMed  CAS  Google Scholar 

  51. Handke, L.D., Shivers, R.P., and Sonenshein, A.L., Interaction of Bacillus subtilis CodY with GTP, J. Bacteriol., 2008, vol. 190, no. 3, pp. 798–806.

    Article  PubMed  CAS  Google Scholar 

  52. Wolz, C., Geiger, T., and Goerke, C., The synthesis and function of the alarmone (p)ppGpp in firmicutes, Int. J. Med. Microbiol., 2010, vol. 300, nos. 2–3, pp. 142–147.

    Article  PubMed  CAS  Google Scholar 

  53. Belitsky, B.R. and Sonenshein, A.L., Contributions of multiple binding sites and effector-independent binding to CodY-mediated regulation in Bacillus subtilis, J. Bacteriol., 2011, vol. 193, no. 2, pp. 473–484.

    Article  PubMed  CAS  Google Scholar 

  54. Mirouze, N., Desai, Y., Raj, A., and Dubnau, D., Spo0A∼P imposes a temporal gate for the bimodal expression of competence in Bacillus subtilis, PLoS Genet., 2012, vol. 8, no. 3, p. e1002586.

    Article  PubMed  CAS  Google Scholar 

  55. Smits, W.K. and Grossman, A.D., The transcriptional regulator Rok binds A+T rich DNA and is involved in repression of a mobile genetic element in Bacillus subtilis, PLoS Genet., 2010, vol. 6, p. e1001207.

    Article  Google Scholar 

  56. González-Pastor, J.E., Hobbs, E.C., and Losick, R., Cannibalism by sporulating bacteria, Science, 2003, vol. 301, no. 5632, pp. 510–513.

    Article  PubMed  Google Scholar 

  57. Suntharalingam, P., Senadheera, M.D., Mair, R.W., Lévesque, C.M., and Cvitkovitch, D.G., The LiaFSR system regulates the cell envelope stress response in Streptococcus mutans, J. Bacteriol., 2009, vol. 191, no. 9, pp. 2973–2984.

    Article  PubMed  CAS  Google Scholar 

  58. Jordan, S., Rietkötter, E., Strauch, M.A., Kalamorz, F., Butcher, B.G., Helmann, J.D., and Mascher, T., LiaRS-dependent gene expression is embedded in transition state regulation in Bacillus subtilis, Microbiology (UK), 2007, vol. 153, no. 8, pp. 2530–2540.

    Article  CAS  Google Scholar 

  59. Wolf, D., Kalamorz, F., Wecke, T., Juszczak, A., Mäder, U., Homuth, G., Jordan, S., Kirstein, J., Hoppert, M., Voigt, B., Hecker, M., and Mascher, T., Indepth profiling of the LiaR Response of Bacillus subtilis, J. Bacteriol., 2010, vol. 192, no. 18, pp. 4680–4693.

    Article  PubMed  CAS  Google Scholar 

  60. Levine, J.H., Fontes, M.E., Dworkin, J., and Elowitz, M.B., Pulsed feedback defers cellular differentiation, PLoS Biol., 2012, vol. 10, no. 1. e1001252

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Sharipova.

Additional information

Original Russian Text © A.A. Toymentseva, M.R. Sharipova, 2013, published in Mikrobiologiya, 2013, Vol. 82, No. 3, pp. 259–273.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toymentseva, A.A., Sharipova, M.R. Genetic mechanisms of bacilli adaptation. Microbiology 82, 257–270 (2013). https://doi.org/10.1134/S0026261713030119

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261713030119

Keywords

Navigation