Skip to main content
Log in

Polygenic control for fermentation of β-fructosides in the yeast Saccharomyces cerevisiae: New genes SUC9 and SUC10

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Using molecular karyotyping and genetic hybridization analysis, two new polymeric β-fructosidase genes, SUC9 and SUC10, were identified in the yeast Saccharomyces cerevisiae, which are located on chromosome XIV and on the chromosome XVI/XIII doublet, respectively. The genes are responsible for fermentation of sucrose and raffinose. The SUC gene genotypes of strains VKM Y-1831 and DBVPG 1340 are SUC2 SUC9 and suc2 0 SUC10, respectively. suc2 0 is a silent sequence. The scientific and applied significance of SUC genes is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Winge Ö and Roberts, C., The Relation between the Polymeric Genes for Maltose, Raffinose, and Sucrose Fermentation in Yeasts, Compt. Rend. Trav. Lab. Carlsberg, Ser. Physiol., 1952, vol. 25, pp. 141–171.

    CAS  Google Scholar 

  2. Carlson, M. and Botstein, D., Organization of the SUC Gene Family in Saccharomyces, Mol. Cell Biol., 1983, vol. 3, pp. 351–359.

    CAS  PubMed  Google Scholar 

  3. Carlson, M., Celenza, J.L., and Eng, F.J., Evolution of the Dispersed SUC Gene Family of Saccharomyces by Rearrangements of Chromosome Telomeres, Mol. Cell. Biol., 1985, vol. 5, pp. 2894–2902.

    CAS  PubMed  Google Scholar 

  4. Naumov, G.I. and Naumova, E.S., Comparative Genetics of Yeasts. SUC8, a New Beta-Fructosidase Gene of Saccharomyces cerevisiae, Genetika, 2010, vol. 46, no. 3 (in press) [Russ. J. Genet.,].

  5. Goffeau, A., Barrell, B.G., Bussey, H., Davis, R.W., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J.D., Jacq, C., Johnston, M., Louis, E.J., Mewes, H.W., Murakami, Y., Philippsen, P., Tettelin, H., and Oliver, S.G., Life with 6000 Genes, Science, 1996, vol. 274, pp. 546–567.

    Article  CAS  PubMed  Google Scholar 

  6. Saccharomyces Genome Database, http://www.yeast-genome.org

  7. Mortimer, R.K., Contopoulou, C.R., and King, J.S., Genetic and Physical Maps of Saccharomyces cerevisiae, Edition 11, Yeast, 1992, vol. 8, pp. 817–902.

    Article  CAS  PubMed  Google Scholar 

  8. Naumov, G.I., Hybridological Study of the Saccharomyces Yeasts from V.I. Kudryvtsev’s Expedition Collections (1934 and 1936), Mikol. Fitopatol., 1988, vol. 22, no. 4, pp. 295–301.

    Google Scholar 

  9. Naumov, G., Naumova, E., and Korhola, M., Genetic Identification of Natural Saccharomyces sensu stricto Yeasts from Finland, Holland and Slovakia, Antonie van Leeuwenhoek J. Microbiol. Serol., 1992, vol. 61, pp. 237–243.

    Article  CAS  Google Scholar 

  10. Mortimer, R.K. and Johnston, J.R. Genealogy of Principal Strains of the Yeasts Genetic Stock Center, Genetics, 1986, vol. 113, pp. 35–43.

    CAS  PubMed  Google Scholar 

  11. Naumov, G.I., Nikonenko, T.A., and Kondrat’eva, V.I., Taxonomic Identification of Saccharomyces from Yeast Genetic Stock Centers of the University of California, Genetika, 1994, vol. 30, no. 1, pp. 45–48.

    CAS  PubMed  Google Scholar 

  12. Vollrath, D. and Davis, R.W., Resolution of DNA Molecules Greater Then 5 Megabases by Contour Clamped Homogenous Electric Fields, Nucleic Acids Res., 1987, vol. 15, pp. 7865–7876.

    Article  CAS  PubMed  Google Scholar 

  13. Mortimer, R. and Contopoulou, R., Yeast Genetic Stock Center Catalogue. Ed.7., Depat. Mol. and Cell. Biol., Div. Genet., University of California, Berkeley, 1991.

    Google Scholar 

  14. Hohmann, S. and Zimmermann, F.K., Cloning and Expression on a Multicopy Vector of Five Invertase Genes of Saccharomyces cerevisiae, Curr. Genet., 1986, vol. 11, pp. 217–225.

    Article  CAS  PubMed  Google Scholar 

  15. Hohmann, S., Physiological and Molecular Genetic Studies on Sucrose Fermentation by Saccharomyces cerevisiae, Ph. D. Thesis, Darmstadt: Technische Universitat, 1987.

    Google Scholar 

  16. Casaregola, S., Nguyen, H.-V., Lepingle, A., Brignon, P., Gendre, F., and Gaillardin, C., A Family of Laboratory Strains of Saccharomyces cerevisiae Carry Rearrangements Involving Chromosomes I and II, Yeast, 1998, vol. 14, pp. 551–564.

    Article  CAS  PubMed  Google Scholar 

  17. Inge-Vechtomov, S.G., New Genetic Lines of the Yeast Saccharomyces cerevisiae, Vestn. Leningr. Univ., 1963, no. 21, pp. 117–125.

  18. Naumov, G.I., Kondrat’eva, V.I, and Naumova, E.S., Hybridization Methods for Homothallic Yeast Diplonts and Haplonts, Biotekhnol., 1986, no. 6, pp. 33–36.

  19. Carle, G.F. and Olson, M.V., An Electrophoretic Karyotype for Yeast, Proc. Natl. Acad. Sci. USA, 1985, vol. 82, pp. 3756–3760.

    Article  CAS  PubMed  Google Scholar 

  20. Anderson, J.A., Best, L.A., and Gaber, R.F., Structural and Functional Conservation Between the High-Affinity K+ Transporters of Saccharomyces uvarum and Saccharomyces cerevisiae, Gene, 1991, vol. 99, pp. 39–46.

    Article  CAS  PubMed  Google Scholar 

  21. Maniatis, T., Fritsch, E.F., and Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1982.

    Google Scholar 

  22. Naumov, G.I., Naumova, E.S., Sancho, E.D., and Korhola, M.P., Polymeric SUC Genes in Natural Populations of Saccharomyces cerevisiae, FEMS Microbiol. Lett., 1996, vol. 135, pp. 31–35.

    Article  CAS  PubMed  Google Scholar 

  23. Ness, F. and Aigle, M., RTM1: A Member of a New Family of Telomeric Repeated Genes in Yeast, Genetics, 1995, vol. 140, pp. 945–956.

    CAS  PubMed  Google Scholar 

  24. Denayrolles, M., de Villechenon, E.P., Lonvaud-Funel, A., and Aigle, M., Incidence of SUC-RTM Telomeric Repeated Genes in Brewing and Wild Wine Strains of Saccharomyces, Curr. Genet., 1997, vol. 31, pp. 457–461.

    Article  CAS  PubMed  Google Scholar 

  25. Codon, A.C., Benitez, T., and Korhola, M., Chromosomal Reorganization During Meiosis of Saccharomyces cerevisiae Baker’s Yeasts, Curr. Genet., 1997, vol. 32, pp. 247–259.

    Article  CAS  PubMed  Google Scholar 

  26. Hawthorne, D.C., Chromosome Mapping in Saccharomyces, Ph. D. Thesis, Seattle: Univ. of Washington, 1955.

    Google Scholar 

  27. Naumov, G., Turakainen, H., Naumova, E., Aho, S., and Korhola, M., A New Family of Polymorphic Genes in Saccharomyces cerevisiae: α-Galactosidase Genes MEL1-MEL7, Mol. Gen. Genet., 1990, vol. 224, pp. 119–128.

    Article  CAS  PubMed  Google Scholar 

  28. Naumov, G., Naumova, E., Turakainen, H., Suominen, P., and Korhola, M., Polymeric Genes MEL8, MEL9, and MEL10—New Members of α-Galastosidase Gene Family in Saccharomyces cerevisiae, Curr. Genet., 1991, vol. 20, pp. 269–276.

    Article  CAS  PubMed  Google Scholar 

  29. Naumov, G.I., Naumova, E.S., Turakainen, H., and Korhola, M.P., Identification of the α-Galactosidase MEL Genes in Some Populations of Saccharomyces cerevisiae: a New Gene MEL11, Genet. Res. Camb., 1996, vol. 67, pp. 101–108.

    Article  CAS  Google Scholar 

  30. Naumov, G.I., Naumova, E.S., Korshunova, I.V., and Yakobsen, M., Yeast Comparative Genetics: A New MEL15 α-Galactosidase Gene of Saccharomyces cerevisiae, Genetika, 2002, vol. 38, no. 10, pp. 1330–1336 [Russ. J. Genet., vol. 38, no. 10, pp. 1127–11132].

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Naumov.

Additional information

Original Russian Text © G.I. Naumov, E.S. Naumova, 2010, published in Mikrobiologiya, 2010, Vol. 79, No. 2, pp. 180–186.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naumov, G.I., Naumova, E.S. Polygenic control for fermentation of β-fructosides in the yeast Saccharomyces cerevisiae: New genes SUC9 and SUC10 . Microbiology 79, 160–166 (2010). https://doi.org/10.1134/S0026261710020050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261710020050

Key words

Navigation