Skip to main content
Log in

Kinetics of D-glucose hydrogenation over a Ru-containing heterogeneous catalyst

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

We studied the kinetics of glucose hydrogenation over a catalyst containing Ru nanoparticles in a super-cross-linked polystyrene matrix. Two hydrogenation pathways, whose rates differ by several orders of magnitude (“fast” and “slow” pathways), were found. The first pathway includes the reaction of glucose from its aqueous solution with hydrogen sorbed on the catalyst’s metal, and the second one includes the reaction of sorbed substrate with hydrogen occurring on the catalyst support due to spillover. A mathematical description of the reaction pathways was proposed, and the most probable scheme of the process was suggested. The role of hydrogen spillover in the kinetics of the occurring processes was considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Baoxin Zhang, Dilver Peña Fuentes & Armin Börner

References

  1. Chen, B., Dingerdissen, U., Krauter, J.G.E., Lansink Rotgerink, H.G.J., Möus, K., Ostgard, D.J., Panster, P., Riermeier, T.H., Seelbald, S., Tacke, T., and Trauthwein, H., Appl. Catal., A, 2005, vol. 280, no. 1, p. 17.

    Article  CAS  Google Scholar 

  2. Maris, E.P., Kenchie, W.C., Oleshko, V., and Davis, R.J., J. Phys. Chem. B, 2006, vol. 110, p. 7869.

    Article  CAS  Google Scholar 

  3. Ahmed, M.J., Khadom, A.A., and Kadhum, A.A.H., Eur. J. Sci. Res., 2009, vol. 130, no. 2, p. 294.

    Google Scholar 

  4. Elliot, D.C., Peterson, K.L., Muzatko, D.S., Alderson, E.V., and Hart, T.R., Appl. Biochem. Biotechnol., 2004, vol. 113, p. 807.

    Article  Google Scholar 

  5. Cortright, R.D., Davda, R.R., and Dumesic, J.A., Nature, 2002, vol. 418, p. 964.

    Article  CAS  Google Scholar 

  6. Castoldi, M.C.M., Camara, L.D.T., and Aranda, D.A.G., React. Kinet. Catal. Lett., 2009, vol. 98, p. 83.

    Article  CAS  Google Scholar 

  7. Crezee, E., Hoffer, B.W., Berger, R.J., Makkee, M., Kapteijn, F., and Moulijn, J.A., Appl. Catal., A, 2003, vol. 251, p. 1.

    Article  CAS  Google Scholar 

  8. Kusserow, B., Schimpf, S., and Claus, P., Adv. Synth. Catal., 2003, vol. 345, p. 289.

    Article  CAS  Google Scholar 

  9. Hoffer, B.W., Crezee, E., Mooijman, P.R.M., van Langeveld, A.D., Kapteijn, F., and Moulijn, J.A., Catal. Today, 2003, vol. 79–80, p. 35.

    Article  Google Scholar 

  10. Gallezot, P., Nicolaus, N., Flèche, G., Fuertes, P., and Perrard, A., J. Catal., 1998, vol. 180, p. 51.

    Article  CAS  Google Scholar 

  11. Van Gorp, K., Boerman, E., Cavenaghi, C.V., and Berden, P.H., Catal. Today, 1999, vol. 52, p. 349.

    Article  Google Scholar 

  12. Rozanov, V.V., Chem. Rev., 1997, vol. 66, no. 2, p. 117.

    Google Scholar 

  13. Prins, R., Chem. Rev., 2012, vol. 112, p. 2714.

    Article  CAS  Google Scholar 

  14. Xiang, Zh., Lan, J., Cao, D., Shao, X., Wang, W., and Broom, D.P., J. Phys. Chem. C, 2009, vol. 113, no. 34, p. 15106.

    Article  CAS  Google Scholar 

  15. Reyhani, S.Z., Mortazavi, S., Mirershadi, A.Z., Moshfegh, P.P., and Nozad Golikand, A., J. Phys. Chem. C, 2011, vol. 115, p. 6994.

    Article  CAS  Google Scholar 

  16. Sifontes Herrera, V.A., Oladele, O., Kordas, K., Ernen, K., Mikkola, J.-P., Murzin, D.Yu., and Salmi, T., J. Chem. Technol. Biotechnol., 2011, vol. 86, p. 658.

    Article  CAS  Google Scholar 

  17. Besson, M. and Gallezot, P., Catal. Today, 2003, vol. 81, p. 547.

    Article  CAS  Google Scholar 

  18. Chen, L., Cooper, A.C., Pez, G.P., and Cheng, H., J. Phys. Chem. C, 2007, vol. 111, p. 18995.

    Article  CAS  Google Scholar 

  19. Wang, Z., Yang, F.H., and Yang, R.T., J. Phys. Chem., vol. 114, p. 1601.

  20. Sha, X., Knippenberg, M.T., Cooper, A.C., Pez, G.P., and Cheng, H., J. Phys. Chem., vol. 112, p. 17465.

  21. Qingquan, L., Macromol. Chem. Phys., 2010, vol. 211, p. 1012.

    Article  Google Scholar 

  22. Germain, J., Fréchet, J.M.J., and Svec, F., Polym. Mater. Sci. Eng., 2007, vol. 97, p. 272.

    CAS  Google Scholar 

  23. Ganz, E. and Dornfeld, M., J. Phys. Chem. C, 2012, vol. 116, p. 3661.

    Article  CAS  Google Scholar 

  24. Pastukhov, A.V., Tsyurupa, M.P., and Davankov, V.A., J. Polym. Sci., Part B: Polym. Phys., 1999, vol. 37, p. 2324.

    Article  CAS  Google Scholar 

  25. Tsyurupa, M.P. and Davankov, V.A., J. Polym. Sci., Polym. Chem. Ed., 1980, vol. 18, no. 4, p. 1399.

    Article  CAS  Google Scholar 

  26. Davankov, V.A. and Tsyurupa, M.P., React. Polym., 1990, vol. 13, p. 27.

    Article  CAS  Google Scholar 

  27. Bronstein, L.M., Matveeva, V.G., and Sulman, E.M., in Nanoparticles and Catalysis, Astruć, Ed., Weinheim: Wiley-VCH, 2007, p. 93.

  28. Sermon, P.A. and Bond, G.C., J. Chem. Soc., Faraday Trans., 1976, vol. 1, no. 72, p. 745.

    Article  Google Scholar 

  29. Shmid, R. and Sapunov, V.N., Search for Chemical Reaction Pathways, Weinheim: Chemie, 1982.

    Google Scholar 

  30. Thomas, J.M. and Thomas, W.J., Principles and Practice of Heterogeneous Catalysis, Weinheim: VCH, 1996.

    Google Scholar 

  31. Germain, J., Fréchet, J.M.J., and Svec, F., Chem. Commun., 2009, p. 1526.

    Google Scholar 

  32. Wang, L. and Yang, R.T., Energy Environ. Sci., 2008, vol. 1, p. 268.

    Article  CAS  Google Scholar 

  33. Wisniak, J., Hershkowitz, M., and Stein, S., Ind. Eng. Chem. Res., 1974, vol. 13, no. 4, p. 232.

    Article  CAS  Google Scholar 

  34. Wisniak, J. and Simon, R., Ind. Eng. Chem. Res., 1979, vol. 18, no. 1, p. 50.

    Article  CAS  Google Scholar 

  35. Nakano, K. and Kusonoki, K., Chem. Eng. Commun., 1985, vol. 34, p. 99.

    Article  CAS  Google Scholar 

  36. Gaidai, N.A., Kazantsev, R.V., Nekrasov, N.V., Shulgax, Yu.M., Ivleva, I.N., and Kiperman, S.L., React. Kinet. Catal. Lett., 2002, vol. 75, no. 1, p. 55.

    Article  CAS  Google Scholar 

  37. Saeys, M., Reyniers, M.-F., Thybaut, J.W., Neurock, M., and Marin, G.B., J. Catal., 2005, vol. 236, p. 129.

    Article  CAS  Google Scholar 

  38. Saeys, M., Reyniers, M.-F., Neurock, M., and Marin, G.B., J. Phys. Chem. B, 2005, vol. 109, no. 6, p. 2064.

    Article  CAS  Google Scholar 

  39. Sermon, P.A. and Bond, G.C., Catal. Rev., 1973, vol. 8, p. 211.

    Article  CAS  Google Scholar 

  40. Li, Y., Yang, F.H., and Yang, R.T., J. Phys. Chem. C, 2007, vol. 111, no. 8, p. 3405.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Matveeva.

Additional information

Original Russian Text © V.G. Matveeva, V.N. Sapunov, M.E. Grigor’ev, M.B. Lebedeva, E.M. Sul’man, 2014, published in Kinetika i Kataliz, 2014, Vol. 55, No. 6, pp. 712–722.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matveeva, V.G., Sapunov, V.N., Grigor’ev, M.E. et al. Kinetics of D-glucose hydrogenation over a Ru-containing heterogeneous catalyst. Kinet Catal 55, 695–704 (2014). https://doi.org/10.1134/S002315841406010X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002315841406010X

Keywords

Navigation