Skip to main content
Log in

Kinetics and mechanism of benzyl para-chlorophenyl ketone oxidation

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The oxidation of benzyl para-chlorophenyl ketone in chlorobenzene at 100°C occurs through the formation of short chains. Non-peroxide reaction products (1-(4-chlorophenyl)-2-hydroxy-2-phenyl-1-ethanone, para-chlorobenzyl, benzaldehyde, and para-chlorobenzoic acid) are formed not only by the transformation of hydroperoxide (1-(4-chlorophenyl)-2-hydroxy-2-phenyl-1-ethanone) but also (or solely) through the recombination of α-ketoperoxyl radicals with or without chain termination. α-Hydroperoxide decomposes predominantly through a heterolytic route to form para-chlorobenzoic acid and benzaldehyde. Benzaldehyde and 1-(4-chlorophenyl)-2-hydroxy-2-phenyl-1-ethanone undergo radical chain oxidation in the reaction medium to form benzoic acid (benzaldehyde), para-chlorobenzyl, and benzoic and para-chlorobenzoic acids (1-(4-chlorophenyl)-2-hydroxy-2-phenyl-1-ethanone). The homolytic decomposition of α-hydroperoxy ketone and α-hydroxy-α-hydroperoxy ketone causes the self-acceleration of the process and affords 1-(4-chlorophenyl)-2-hydroxy-2-phenyl-1-ethanone or, to a lesser extent, benzaldehyde and para-chlorobenzoic acid (α-hydroperoxy ketone). para-Chlorobenzoic acid substantially accelerates the heterolytic decomposition of α-hydroxy-α-hydroperoxy ketone and the oxidation of benzyl para-chlorophenyl ketone with peroxy acids to ester according to the Baeyer-Villiger mechanism. The rate constants of the main steps of the process and kinetic parameters are calculated by solving the inverse kinetic problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Denisov, E.T., Mitskevich, N.I., and Agabekov, V.E., Mekhanizm zhidkofaznogo okisleniya kislorodsoderzhashchikh soedinenii (Mechanism of the Liquid-Phase Oxidation of Oxygen-Containing Compounds), Minsk: Nauka Tekhnika, 1975.

    Google Scholar 

  2. Perkel’, A.L., Voronina, S.G., and Freidin, B.G., Usp. Khim., 1994, vol. 63, no. 9, p. 793.

    CAS  Google Scholar 

  3. Fokin, A.A. and Freidin, B.G., Zh. Prikl. Khim., 1985, vol. 58, no. 2, p. 346.

    CAS  Google Scholar 

  4. Fokin, A.A., Freidin, B.G., Volosatova, N.I., and Bundina, I.V., Zh. Prikl. Khim., 1988, vol. 61, no. 2, p. 341.

    CAS  Google Scholar 

  5. Perkel’, A.L., Freidin, B.G., Voronina, S.G, Ginter, S.V., and Fokin, A.A., Zh. Prikl. Khim., 1989, vol. 62, no. 11, p. 2560.

    CAS  Google Scholar 

  6. Perkel’, A.L., Voronina, S.G., Shimko, E.I., and Freidin, B.G., Zh. Prikl. Khim., 1991, vol. 64, no. 3, p. 592.

    CAS  Google Scholar 

  7. Perkel’, A.L., Bogomol’nyi, G.M., and Voronina, S.G., Zh. Anal. Khim., 1991, vol. 46, no. 7, p. 1411.

    CAS  Google Scholar 

  8. Perkel’, A.L. and Voronina, S.G., Zh. Anal. Khim., 1998, vol. 53, no. 4, p. 343 [J. Anal. Chem. (Engl. Transl.), vol. 53, no. 4, p. 299].

    Google Scholar 

  9. Romantsevich, A.M., Extended Abstract of Cand. Sci. (Chem.) Dissertation, Donetsk: Inst. of Physicoorganic and Coal Chemistry, 1986.

    Google Scholar 

  10. Khursan, S.L., Martem’yanov, V.S., and Denisov, E.T., Kinet. Katal., 1990, vol. 31, no. 5, p. 1031.

    CAS  Google Scholar 

  11. Denisov, E.T. and Kovalev, G.I., Okislenie i stabilizatsiya reaktivnykh topliv (Oxidation and Stabilization of Jet Fuels), Moscow: Khimiya, 1983.

    Google Scholar 

  12. Perkel’, A.L. and Bogomol’nyi, G.M., Zh. Prikl. Khim., 1989, vol. 62, no. 5, p. 1100.

    CAS  Google Scholar 

  13. Svoistva organicheskikh soedinenii (Properties of Organic Compounds) Potekhin, A.A., Ed., Moscow: Khimiya, 1968.

    Google Scholar 

  14. Fokin, A.A. and Freidin, B.G., Kinet. Katal., 1985, vol. 26, no. 1, p. 230.

    CAS  Google Scholar 

  15. Voronina, S.G., Perkel’, A.L., and Freidin, B.G., Kinet. Katal., 1992, vol. 33, no. 2, p. 266.

    CAS  Google Scholar 

  16. Perkel’, A.L. and Voronina, S.G., Zh. Prikl. Khim., 1999, vol. 72, no. 9, p. 1409.

    CAS  Google Scholar 

  17. Voronina, S.G., Revkov, O.A., and Perkel’, A.L., Kinet. Katal., 2006, vol. 47, no. 1, p. 75.

    Article  Google Scholar 

  18. Landolt-Bönstein Lahlwerte und Funktionen aus Naturwissenschaften und Technik, Neue Serie, Gruppe II, Berlin: Springer, 1984, vol. 13.

  19. Perkel’, A.L. and Freidin, B.G., Kinet. Katal., 1993, vol. 34, no. 4, p. 612.

    CAS  Google Scholar 

  20. Perkel’, A.L. and Freidin, B.G., Zh. Prikl. Khim., 1981, vol. 54, no. 6, p. 1376.

    CAS  Google Scholar 

  21. Überreiter, K. and Rabel, W., Makromol. Chem., 1963, vol. 68, no. 1, p. 12.

    Article  Google Scholar 

  22. Perkel’, A.L., Zhu. Prikl. Khim., 1991, vol. 64, no. 7, p. 1533.

    CAS  Google Scholar 

  23. March, J., Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, McGraw-Hill Series in Advanced Chemistry, New York: McGraw-Hill, 1968.

    Google Scholar 

  24. Shumkina, T.F., Voronina, S.G., Krutskii, D.L., and Perkel’, A.L., Zh. Prikl. Khim., 1995, vol. 68, no. 2, p. 290.

    CAS  Google Scholar 

  25. Shumkina, T.F., Voronina, S.G., and Perkel’, A.L., Zh. Prikl. Khim., 1996, vol. 69, no. 2, p. 287.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.A. Revkov, S.G. Voronina, A.L. Perkel’, 2007, published in Kinetika i Kataliz, 2007, Vol. 48, No. 1, pp. 22–31.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Revkov, O.A., Voronina, S.G. & Perkel’, A.L. Kinetics and mechanism of benzyl para-chlorophenyl ketone oxidation. Kinet Catal 48, 17–25 (2007). https://doi.org/10.1134/S002315840701003X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002315840701003X

Keywords

Navigation