Skip to main content
Log in

Mechanisms of oxygen adsorption and desorption on polycrystalline palladium

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The adsorption and desorption of oxygen on a polycrystalline palladium (Pd(poly)) surface (10-to 100-μm crystallites; ∼32% (100), ∼18% (111), ∼34% (311), and ∼15% (331)) at P O2 ≤ 1.3 × 10−5 Pa and T = 500–1300 K have been studied by TPD and mathematical modeling. The kinetics of O2 adsorption and desorption on Pd(poly) are primarily governed by the formation and decomposition of oxygen adsorption structures on the (100) and (111) crystallite faces. The O2 adsorption rate is constant at ϑ ≤ 0.15–0.25 owing to the formation of the p(2 × 2) structure with an Oads-surface bonding energy of D(Pd-O) = 364 kJ/mol on the (100) and (111) faces. The adsorption rate decreases with increasing coverage at ϑ ≥ 0.15–0.25 because of the growth, on the (100) face, of the c(2 × 2) structure, in which D(Pd-O) is reduced to 324 kJ/mol by lateral interactions in the adsorption layer. A high-temperature (∼800 K) O2 desorption peak is observed for ϑ ≤ 0.25, which is due to O2 desorption from a disordered adsorption layer according to a second-order rate law with an activation energy of E des = 230 kJ/mol. A lower temperature (∼700 K) O2 desorption peak is observed for ϑ ≥ 0.25, which is due to O2 released by the c(2 × 2) structure according to a first-order rate law with E des = 150 kJ/mol. At ϑ ≥ 0.25, there are repulsive interactions between Oads atoms on Pd(poly) (εaa = 5–10 kJ/mol).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heck, R.M. and Farrauto, R.J., Catalytic Air Pollution Control: Commercial Technology, New York: Van Nostrand, 1995, p. 102.

    Google Scholar 

  2. Nieuwenhuys, B.E., Adv. Catal., 1999, vol. 44, p. 259.

    Article  CAS  Google Scholar 

  3. Ciuparu, D., Lyubovsky, M.R., Altman, E., Pfefferle, L.D., and Datye, A., Catal. Rev., 2002, vol. 44, p. 593.

    Article  CAS  Google Scholar 

  4. Matsushima, T. and White, J.M., Surf. Sci., 1977, vol. 67, p. 122.

    Article  CAS  Google Scholar 

  5. Milun, M. and Pervan, P., Surf. Sci., 1989, vol. 218, p. 363.

    Article  CAS  Google Scholar 

  6. Conrad, H., Ertl, G., Kuppers, G., and Latta, E.E., Surf. Sci., 1977, vol. 65, p. 245.

    Article  CAS  Google Scholar 

  7. Matsushima, T., Surf. Sci., 1985, vol. 157, p. 297.

    Article  CAS  Google Scholar 

  8. Imbihl, R. and Demuth, J.E., Surf. Sci., 1986, vol. 173, p. 395.

    Article  CAS  Google Scholar 

  9. Guo, X., Hoffman, A., and Yates, J.T., Jr., J. Chem. Phys., 1989, vol. 90, p. 5787.

    Article  CAS  Google Scholar 

  10. Zheng, G. and Altman, E.I., Surf. Sci., 2000, vol. 462, p. 151.

    Article  CAS  Google Scholar 

  11. Orent, T.W. and Bader, S.D., Surf. Sci., 1982, vol. 115, p. 323.

    Article  CAS  Google Scholar 

  12. Stuve, E.M., Madix, R.J., and Brundle, C.R., Surf. Sci., 1984, vol. 146, p. 155.

    Article  CAS  Google Scholar 

  13. Chang, S.L. and Thiel, P.A., J. Chem. Phys., 1988, vol. 88, p. 2071.

    Article  CAS  Google Scholar 

  14. Simmons, G.W., Wang, Y-N., Marcos, J., and Klier, K., J. Phys. Chem., 1991, vol. 95, p. 4522.

    Article  CAS  Google Scholar 

  15. Zheng, G. and Altman, E.I., Surf. Sci., 2002, vol. 504, p. 253.

    Article  CAS  Google Scholar 

  16. Goschnick, J., Wolf, M., Grunze, M., Unertl, W.N., Block, J.H., and Loboda-Cackovic, J., Surf. Sci., 1986, vol. 178, p. 831.

    Article  CAS  Google Scholar 

  17. He, J.-W., Memmert, U., Griffiths, K., and Norton, P.R., J. Chem. Phys., 1989, vol. 90, p. 5082.

    Article  CAS  Google Scholar 

  18. Jones, I.Z., Bennett, R.A., and Bowker, M., Surf. Sci., 1999, vol. 439, p. 235.

    Article  CAS  Google Scholar 

  19. Bennett, R.A., Poulston, S., Jones, I.Z., and Bowker, M., Surf. Sci., 1998, vol. 401, p. 72.

    Article  CAS  Google Scholar 

  20. Yagi, K. and Fukutani, H., Surf. Sci., 1998, vols. 412–413, p. 489.

    Article  Google Scholar 

  21. Yagi, K., Sekiba, D., and Fukutani, H., Surf. Sci., 1999, vol. 442, p. 307.

    Article  CAS  Google Scholar 

  22. Salanov, A.N. and Savchenko, V.I., Kinet. Katal., 1992, vol. 33, no. 2, p. 381.

    CAS  Google Scholar 

  23. Salanov, A.N. and Bibin, V.N., Surf. Sci., 1999, vol. 441, p. 399.

    Article  CAS  Google Scholar 

  24. Salanov, A.N., Bibin, V.N., and Yakushko, V.T., J. Mol. Catal. A: Chem., 2000, vol. 158, p. 367.

    Article  CAS  Google Scholar 

  25. Redhead, P.A., Vacuum, 1962, vol. 12, p. 203.

    Article  CAS  Google Scholar 

  26. Zhdanov, V.P., Surf. Sci., 1981, vol. 111, p. 63.

    Article  CAS  Google Scholar 

  27. Habenschaden, E. and Kuppers, J., Surf. Sci., 1984, vol. 138, p. L147.

    Article  CAS  Google Scholar 

  28. Zhdanov, V.P., Surf. Sci. Rep., 1991, vol. 12, p. 183.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.N. Salanov, A.I. Titkov, V.N. Bibin, 2006, published in Kinetika i Kataliz, 2006, Vol. 47, No. 3, pp. 438–445.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salanov, A.N., Titkov, A.I. & Bibin, V.N. Mechanisms of oxygen adsorption and desorption on polycrystalline palladium. Kinet Catal 47, 430–436 (2006). https://doi.org/10.1134/S0023158406030153

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158406030153

Keywords

Navigation