Skip to main content
Log in

Low density polyethylene by tandem catalysis with single site Ti(IV)/Co(II) catalysts

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

A variety of branched polyethylenes (PE), ranging from semicrystalline linear low density polyethylene to completely amorphous low density polyethylene and rubbery PE, can be produced from ethylene alone by tandem catalysis using as oligomerization catalysts the (imino)pyridyl Co(II) complexes NBTCoCl2 (1) ({6-(benzo[b]thiophen-2-yl)-2-(imine)pyridyl)}CoCl2), NETCoCl2 (2) ({6-(4-ethylthiophen-2-yl)-2-(imine)pyridyl)}CoCl2), or NPhCoCl2 (3) ({6-(phenyl)-2-(imine)pyridyl)}CoCl2) and as a copolymerization catalyst [η5-C5Me4)SiMe2(t-BuN)]TiCl2 (4). The catalytic activity of the systems 1/4/MAO, 2/4/MAO, and 3/4/MAO has been evaluated under comparable experimental conditions (T = 30°C, [ethylene] = 0.35 mol/l), varying the molar fraction of the cobalt precursors. A positive comonomer effect was observed for all the systems investigated. The maximum productivity (4570 kg PE (mol Ti)−1 h−1) was obtained for the benzothiophenyl-substituted cobalt complex. An effective control of the branching in the polymer backbone was achieved by varying either the oligomerization catalyst or its molar fraction. Completely amorphous materials with T g as low as-60°C could be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bianchini, C., Miller, H., and Ciardelli, F., Modification and Blending of Synthetic and Natural Macromolecules, Ciardelli, F. and Peneczek, S., Eds., Dordrecht: Kluwer, 2004, p. 15.

    Google Scholar 

  2. Metallocene-Based Polyolefines, Scheirs, J. and Kaminsky, W., Eds., Chichester: Wiley, 2000.

    Google Scholar 

  3. Wang, W., Yan, D., Charpentier, P.A., Zhu, S., Hamielec, A., and Sayer, B.G., Macromol. Chem. Phys., 1998, vol. 199, p. 409.

    Google Scholar 

  4. Whiteley, K.S., in Ullmann’s Encyclopedia of Industrial Chemistry, Gerhatz, W. and Elvers, B., Eds., Weinheim: VCH, 1992, vol. A21, p. 488.

    Google Scholar 

  5. Johnson, L.K., Killian, C.M., and Brookhart, M., J. Am. Chem. Soc., 1995, vol. 117, p. 6414.

    Article  CAS  Google Scholar 

  6. Komon, Z.J.A. and Bazan, G.C., Macromol. Rapid Commun., 2001, vol. 22, p. 467.

    Article  CAS  Google Scholar 

  7. McKnight, A.L. and Waymouth, A.L., Chem. Rev., 1998, vol. 98, p. 2587.

    Article  CAS  Google Scholar 

  8. Boussie, T.R., Diamond, G.M., Goh, C., Hall, K.A., LaPointe, A.M., Leclerc, M., Lund, C., Murphy, V., Shoemaker, J.A.W., Tracht, U., Turner, H., Zhang, J., Uno, T., Rosen, R.K., and Stevens, J.C., J. Am. Chem. Soc., 2003, vol. 125, p. 4306.

    Article  CAS  Google Scholar 

  9. Eur. Pat. Appl. EP 416 815, 1991.

  10. Bianchini, C., Giambastiani, G., Mantovani, G., Meli, A., and Mimeau, D., J. Organomet. Chem., 2004, vol. 689, p. 1356.

    Article  CAS  Google Scholar 

  11. Ye, Z., AlObaidi, F., and Zhu, S., Macromol. Rapid Commun., 2004, vol. 25, p. 647.

    Article  CAS  Google Scholar 

  12. Wang, J., Li, H., Guo, N., Li, L., Stern, C.L., and Marks, T.J., Organometallics, 2004, vol. 23, p. 5112.

    Article  CAS  Google Scholar 

  13. Li, L., Metz, M.V., Li, H., Chen, M.-C., Marks, T.J., Liable-Sands, L., and Rheingold, A.L., J. Am. Chem. Soc., 2002, vol. 124, p. 12725.

  14. Abramo, G.P., Li, L., and Marks, T.J., J. Am. Chem. Soc., 2002, vol. 124, p. 13966.

    Article  CAS  Google Scholar 

  15. Wang, H., Ma, Z., Ke, Y., and Hu, Y., Polym. Int., 2003, vol. 52, p. 1546.

    Article  CAS  Google Scholar 

  16. Chien, J.C.W. and Nozaki, T., J. Polym. Sci., Part A: Polym. Chem., 1993, vol. 31, p. 227.

    Article  CAS  Google Scholar 

  17. Philipp, W., Trinkle, S., Lilge, D., Friedrich, C., and Mülhaupt, R., Macromol. Mater. Eng., 2001, vol. 286, p. 309.

    Article  Google Scholar 

  18. Philipp, W., Trinkle, S., Suhm, J., Mader, D., Friedrich, C., and Mülhaupt, R., Macromol. Chem. Phys., 2000, vol. 201, p. 604.

    Article  Google Scholar 

  19. Galland, G.B., Seferin, M., Mauler, R.S., and Dos Santos, J.H.Z., Polym. Int., 1999, vol. 48, p. 660.

    Article  CAS  Google Scholar 

  20. Xu, G. and Ruckenstein, E., Macromolecules, 1998, vol. 31, p. 4724.

    Article  CAS  Google Scholar 

  21. Sperber, O. and Kaminsky, W., Macromolecules, 2003, vol. 36, p. 9014.

    Article  CAS  Google Scholar 

  22. Usami, T. and Takayama, S., Macromolecules, 1984, vol. 17, p. 1756.

    Article  CAS  Google Scholar 

  23. Randall, J.C., J. Macromol. Sci., Rev. Macromol. Chem. Phys, 1989, vol. C29, p. 201.

    CAS  Google Scholar 

  24. Galland, G.B., de Souza, R.F., Mauler, R.S., and Nunes, F.F., Macromolecules, 1999, vol. 32, p. 1620.

    CAS  Google Scholar 

  25. Peacock, A., in Handbook of Polyethylene: Structures, Properties, and Applications, New York: Marcel Dekker, 2000.

    Google Scholar 

  26. Guan, Z., Chem. Eur. J., 2002, vol. 8, no. 14, p. 3086.

    Article  CAS  Google Scholar 

  27. Barnhart, R.W. and Bazan, G.C., J. Am. Chem. Soc., 1998, vol. 120, p. 1082.

    Article  CAS  Google Scholar 

  28. Gates, D.P., Svejda, S.A., Onate, E., Killian, C.M., Johnson, L.K., White, P.S., and Brookhart, M., Macromolecules, 2000, vol. 33, p. 2320.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frediani, M., Bianchini, C. & Kaminsky, W. Low density polyethylene by tandem catalysis with single site Ti(IV)/Co(II) catalysts. Kinet Catal 47, 207–212 (2006). https://doi.org/10.1134/S002315840602008X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002315840602008X

Keywords

Navigation