Skip to main content
Log in

A study of intramolecular hydrogen bonds C-H⋯X (X = N, O) within the theory of the electron localization function

  • Theory of Molecular Structure and Chemical Bonding
  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Electron localization functions (ELFs) are calculated at the hydrogen bond critical points for a number of molecules having the intramolecular hydrogen bond C-H⋯X (X = N, O). It is shown that the values of the core and valence electrons bifurcation index (CVBI) are positive in all cases. This enables the characterization of the studied hydrogen bonds as weak interactions of mainly electrostatic nature. For stronger intramolecular hydrogen bonds N-H⋯O with a significant contribution of covalence to the bonding, the bifurcation index is negative. A relationship between the parameters calculated within the theory of the electron localization function (ELF) and the quantum theory “Atoms in Molecules” (QTAIM) is observed. In the 1H NMR spectra, the resonance shift of the bridging hydrogen atom, induced by a hydrogen bond is much smaller for the hydrogen bonds having a positive bifurcation index than that for the hydrogen bonds with the negative bifurcation index, and the interatomic H⋯X distance is much longer in the former case. In the IR spectra the positive bifurcation index corresponds to a blue shift of the stretching vibration of the covalent bond of the hydrogen donor due to the hydrogen bonding and the negative bifurcation index corresponds to the red shift of this band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. L. Sosa, N. M. Peruchena, and R. H. Contreras, J. Mol. Struct. (Theochem.), 577, No. 2/3, 219 (2002).

    Article  CAS  Google Scholar 

  2. S. Wojtulewski and S. J. Grabowski, J. Chem. Phys., 309, No. 2/3, 183 (2005).

    CAS  Google Scholar 

  3. A. Filarowski and I. Maierz, J. Phys. Chem. A, 112, No. 4, 3119 (2008).

    Article  CAS  Google Scholar 

  4. I. Alkorta, J. Elguero, H.-H. Limbach, I.G. Shenderovich, and T. Winkler, Magn. Reson. Chem., No. 7, 585 (2009).

    Google Scholar 

  5. A.V. Afonin, I.A. Ushakov, A.V. Vashchenko, E.V. Kondrashov, and A.Yu. Rulev, Magn. Reson. Chem.,48, No. 9, 661 (2010).

    Article  CAS  Google Scholar 

  6. X. Li, Y. Wang, S. Zheng, and L. Meng, Struct. Chem., 23, No. 4, 1233 (2012).

    Article  CAS  Google Scholar 

  7. I. Majerz, J. Phys. Chem. A, 116, No. 30, 7992 (2012).

    Article  CAS  Google Scholar 

  8. L. Rincon, R. Almeida, D. Garcia-Aldea, and H. Diez y Riega, J. Chem. Phys., 114, No. 13, 5552 (2001).

    Article  CAS  Google Scholar 

  9. R. Parthasarathi, V. Subramanian, and N. Sathyamurthy, J. Phys. Chem. A, 109, No. 5, 843 (2005).

    Article  CAS  Google Scholar 

  10. I. Mata, I. Alkorta, E. Espinosa, and E. Molins, Chem. Phys. Lett., 507, No. 1–3, 185 (2011).

    Article  CAS  Google Scholar 

  11. T. Yu. Nikolaenko, L. B. Bulavin, and D. M. Hovorun, Phys. Chem. Chem. Phys., 14, No. 20, 7441 (2012).

    Article  Google Scholar 

  12. E. Espinosa, E. Molins, and C. Lecomte, Chem. Phys. Lett., 285, No. 3/4, 170 (1998).

    Article  CAS  Google Scholar 

  13. A. V. Shishkina, V. V. Zhurov, A. I. Stash, M. V. Vener, A. A. Pinkerton, and V. G. Tsirelson, Cryst. Growth Des., 13, No. 2, 816 (2013).

    Article  CAS  Google Scholar 

  14. A. V. Vashchenko and A. V. Afonin, J. Struct. Chem., 55, No. 4, 636 (2014).

    Article  CAS  Google Scholar 

  15. A. D. Becke and K. E. Edgecombe, J. Chem. Phys., 92, No. 9, 5397 (1990).

    Article  CAS  Google Scholar 

  16. A. Savin, R. Nesper, S. Wengert, and T. F. Fässler, Angew. Chem. Int. Ed. Engl., 36, No. 17, 1808 (1997).

    Article  CAS  Google Scholar 

  17. K. Finzel, and M. Kohout, Theor. Chem. Acc., 132, No. 11, 1392 (2013).

    Article  Google Scholar 

  18. N. H. March, Phys. Lett. A, 113, No. 9, 476 (1986).

    Article  Google Scholar 

  19. M. Levy and H. Ou-Yang, Phys. Rev. A, 38, No. 2, 625 (1988).

    Article  Google Scholar 

  20. F. Fuster and B. Silvi, Theor. Chem. Acc., 104, No. 1, 13 (2000).

    Article  CAS  Google Scholar 

  21. M. E. Alikhani, F. Fuster, and B. Silvi, Struct. Chem., 16, No. 3, 203 (2005).

    Article  CAS  Google Scholar 

  22. F. Fuster and S. J. Grabowski, J. Phys. Chem. A, 115, No. 35, 10078 (2011).

    Article  CAS  Google Scholar 

  23. I. V. Drebushchak and S. G. Kozlova, J. Struct. Chem., 51, No. 1, 166 (2010).

    Article  CAS  Google Scholar 

  24. C. F. Mata and R. J. Boyd, The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design, Wiley-VCH Verlag CmbH&Co, Weinheim (2007).

    Book  Google Scholar 

  25. R. W. F. Bader, Atoms in Molecules. A Quantum Theory, Clarendon Press, Oxford (1990).

    Google Scholar 

  26. I. V. Alabugin, M. Manoharan, S. Peabody, and F. Weinhold, J. Am. Chem. Soc., 125, No. 19, 5973 (2003).

    Article  CAS  Google Scholar 

  27. K. Mizuno, S. Imafuji, T. Fujiwara, T. Ohta, and Y. Tamiya, J. Phys. Chem. B, 107, No. 16, 3972 (2003).

    Article  CAS  Google Scholar 

  28. A. J. Barnes, J. Mol. Struct., 704, No. 1–3, 3 (2004).

    Article  CAS  Google Scholar 

  29. Y. Katsumoto, H. Komatsu, and K. Ohno, J. Am. Chem. Soc., 128, No. 29, 9278 (2006).

    Article  CAS  Google Scholar 

  30. A. V. Afonin, V. K. Voronov, B. V. Trzhtsinskaya, E. V. Rudakova, and V. V. Keiko, Izv. AN SSSR. Ser. Khim., No. 4, 1264 (1987).

    Google Scholar 

  31. A. V. Afonin, E. S. Domnina, L. V. Baikalova, and V. K. Voronov, Izv. AN SSSR. Ser. Khim, No. 12, 2747 (1990).

    Google Scholar 

  32. A. V. Afonin, A. V. Vashchenko, T. Takagi, A. Kimura, and H. Fujiwara, Canad. J. Chem., 77, No. 4, 416 (1999).

    Article  CAS  Google Scholar 

  33. A. V. Afonin, I. A. Ushakov, S. V. Zinchenko, O. A. Tarasova, and B.A. Trofimov, Magn. Reson. Chem., 38, No. 12, 994 (2000).

    Article  CAS  Google Scholar 

  34. I. A. Ushakov, A. V. Afonin, V. K. Voronov, Z. V. Stepanova, L. N. Sobenina, and A. I. Mikhaleva, Zh. Org. Khimii, 39, No. 9, 1391 (2003).

    Google Scholar 

  35. A. V. Afonin, I. A. Ushakov, A. V. Vashchenko, E. V. Kondrashov, and A. Yu. Rulev, Magn. Reson. Chem., 48, No. 9, 661 (2010).

    Article  CAS  Google Scholar 

  36. V. I. Sokol, L. V. Baikalova, E. S. Domnina, and M. A. Porai-Koshits, Izv. AN SSSR. Ser. Khim., No. 6, 1376 (1992).

    Google Scholar 

  37. N. N. Chipanina, V. K. Turchaninov, I. I. Vorontsov, M. Yu. Antipin, Z. V. Stepanova, L. N. Sobenina, A. I. Mikhaleva, and B. A. Trofimov, Izv. AN SSSR. Ser. Khim., No. 1, 107 (2002).

    Google Scholar 

  38. Z. V. Stepanova, L. N. Sobenina, A. I. Mikhaleva, I. A. Ushakov, V. N. Elokhina, I. I. Vorontsov, M. Yu. Antipin, and B. A. Trofimov, Zh. Org. Khimii, 39, No. 11, 1705 (2003).

    Google Scholar 

  39. A. V. Vashchenko and A. V. Afonin, J. Struct. Chem., 54, No. 6, 997 (2013).

    Article  Google Scholar 

  40. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. S. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. J. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, D. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Gaussian Inc., Wallingford CT (2009).

    Google Scholar 

  41. T. A. Keith, AIMAll, Version 11.12.19 (2011); http://aim.tkgristmill.com.

    Google Scholar 

  42. S. Noury, X. Krokidis, F. Fuster, and B Silvi, Topmod package (1997).

    Google Scholar 

  43. R. J. Abraham and M. Mobli, Magn. Reson. Chem., 45, No. 7, 865 (2007).

    Article  CAS  Google Scholar 

  44. A. V. Afonin and A. V. Vashchenko, J. Mol. Struct. (Theochem), 940, No. 1–3, 56 (2010).

    Article  CAS  Google Scholar 

  45. B. A. Trofimov, Z. V. Stepanova, L. N. Sobenina, A. I. Mikhaleva, T. I. Vakulskaya, V. N. Elokhina, I. A. Ushakov, D.-S. D. Toryashinova, and E. I. Kositsina, Izv. AN SSSR. Ser. Khim., No. 8, 1562 (1999).

    Google Scholar 

  46. N. N. Chipanina, Z. V. Stepanova, G. G. Gavrilova, L. N. Sobenina, and A. I. Mikhaleva, Izv. AN SSSR. Ser. Khim., No. 11, 1945 (2000).

    Google Scholar 

  47. R. Taylor and O. Kennard, J. Am. Chem. Soc., 104, No. 19, 5063 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Vashchenko.

Additional information

Original Russian Text © 2014 A. V. Vashchenko, A. V. Afonin.

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 55, No. 6, pp.1064–1072, November–December, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vashchenko, A.V., Afonin, A.V. A study of intramolecular hydrogen bonds C-H⋯X (X = N, O) within the theory of the electron localization function. J Struct Chem 55, 1010–1018 (2014). https://doi.org/10.1134/S002247661406002X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002247661406002X

Keywords

Navigation