Skip to main content
Log in

Hydrogen-bonding interaction of urea with DNA bases: A density functional theory study

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

This work deals with the interaction between urea and DNA bases (adenine, thymine, guanine, and cytosine). The optimized geometries, binding energies, and harmonic vibrational frequencies are calculated using the DFT/B3LYP functional combined with the 6–31+G(d,p) basis set. Their interactions are studied aiming to understand more about the nature of the intercalation binding forces between urea and DNA. Fourteen stable complexes are found on the potential energy surface. The structures are cyclic; they are stabilized by NH...O/N and CH...O interactions. The binding energies range from −19.9 kJ·mol−1 to −74.0 kJ·mol−1. The obtained formation energies indicate that Urea:G and Urea:C are more favorable than Urea:T and Urea:A. In addition, the Atoms in Molecules theory is performed to study the hydrogen bonds in the complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Watson and F. H. C. Crick, Nature, 171, 737/738 (1953).

    Google Scholar 

  2. R. Parthasarathi and V. Subramanian, Chem. Phys. Lett., 418, 530–534 (2006).

    Article  CAS  Google Scholar 

  3. A. Dkhissi and R. Blossey, Chem. Phys. Lett., 439, 35–39 (2007).

    Article  CAS  Google Scholar 

  4. V. Thiviyanathan, A. Somasunderam, D. E. Volk, et al., Biochem. Biophys. Res. Commun., 366, 752–757 (2008).

    Article  CAS  Google Scholar 

  5. Ż. Czyżnikowska and R. Zaleśny, Biophys. Chem., 139, 137–143 (2009).

    Article  Google Scholar 

  6. N. Arora and B. Jayaram, J. Phys. Chem. B, 102, 6139–6144 (1998).

    Article  CAS  Google Scholar 

  7. J. Grunenberg, J. Am. Chem. Soc., 126, 16310/16311 (2004).

    Article  Google Scholar 

  8. P. Deepa, P. Kolandaivel, and K. Senthilkumar, Biophys. Chem., 136, 50–58 (2008).

    Article  CAS  Google Scholar 

  9. N. Gull, S. Kumar, B. Ahmad, and R. H. Khan, Colloids Surf. B, 51, 10–15 (2006).

    Article  CAS  Google Scholar 

  10. G. Dhawan, G. Sumana, and B. D. Malhotra, Biochem. Eng. J., 44, 42–52 (2009).

    Article  CAS  Google Scholar 

  11. Y. P. Sun, X. H. Ren, and H. J. Wang, Struct. Chem., 20, 213–220 (2009).

    Article  CAS  Google Scholar 

  12. M. Boiocchi, L. Del Boca, D. E. Gomez, et al., J. Am. Chem. Soc., 126, 16507–16514 (2004).

    Article  CAS  Google Scholar 

  13. J. A. Dobado, J. Molina, and D. Portal Olea, J. Phys. Chem. A, 102, 778–784 (1998).

    Article  CAS  Google Scholar 

  14. R. V. Belosludov, Z. Q. Li, and Y. Kawazoe, Mol. Eng., 8, 105–119 (1999).

    Article  Google Scholar 

  15. M. J. Frisch et al., GAUSSIAN 03, Gaussian Inc., Pittsburgh, PA (2003).

    Google Scholar 

  16. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  17. J. M. Pérez-Jordá and A. D. Becke, Chem. Phys. Lett., 233, 134–137 (1995).

    Article  Google Scholar 

  18. M. K. Hazra, Chem. Phys. Lett., 473, 10–16 (2009).

    Article  CAS  Google Scholar 

  19. E. V. Bartashevich, M. R. Abdrachmanova, V. A. Potemkin, and I. Yu. Bagryanskaya, J. Struct. Chem., 47, 114–119 (2006).

    Article  CAS  Google Scholar 

  20. S. F. Bureiko, A. Koll, and M. Przeslavska, J. Struct. Chem., 43, 412–422 (2002).

    Article  CAS  Google Scholar 

  21. S. F. Boys and F. Bernardi, Mol. Phys., 19, 553–566 (1970).

    Article  CAS  Google Scholar 

  22. R. F. W. Bader, Atoms in Molecules-A Quantum Theory, Oxford University Press, Oxford, UK (1990).

    Google Scholar 

  23. C. F. Matta, J. Hernández-Trujillo, T.-H. Tang, and R. F. W. Bader, Chem. Eur. J., 91, 1940–1951 (2003).

    Article  Google Scholar 

  24. L. Clowney, S. C. Jain, A. R. Srinivasan, et al., J. Am. Chem. Soc., 118, 509–518 (1996).

    Article  CAS  Google Scholar 

  25. R. K. McMullan, P. Benci, and B. M. Craven, Acta Cryst. B, 36, 1424–1430 (1980).

    Article  Google Scholar 

  26. J. Florián and J. Leszczy⇏ki, Intern. J. Quantum Chem., 22, 207–225 (1995).

    Article  Google Scholar 

  27. R. D. Brown, P. D. Godfrey, and J. Storey, J. Mol. Spectrosc., 58, 445–450 (1975).

    Article  CAS  Google Scholar 

  28. R. J. Meier and B. Coussens, J. Mol. Struct. (THEOCHEM), 253, 25–33 (1992).

    Article  Google Scholar 

  29. J. Reynisson and S. Steenken, Phys. Chem. Chem. Phys., 4, 5353–5358 (2002).

    Article  CAS  Google Scholar 

  30. R. F. W. Bader, J. Phys. Chem. A, 102, 7314–7323 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yo. Xia.

Additional information

Original Russian Text Copyright © 2011 by Z. Qiu, Yo. xia, H. Wang, and K. Diao

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 52, No. 3, pp. 478–486, May–June, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, Z., Xia, Y., Wang, H. et al. Hydrogen-bonding interaction of urea with DNA bases: A density functional theory study. J Struct Chem 52, 462–470 (2011). https://doi.org/10.1134/S0022476611030036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476611030036

Keywords

Navigation