Skip to main content
Log in

Coupling of membrane and metabolic functions in nucleated erythrocytes of Scorpaena porcus L. Under hypoxia in vivo and in vitro

  • Comparative and Ontogenic Biochemistry
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The in vivo and in vitro effect of hypoxia (0.57–8.17 mg O2l−1) on functional characteristics of nucleated erythrocytes of the benthic scorpionfish Scorpaena porcus L. was studied. The cellular systems in this species were established to be characterized by a balanced suppression of membrane and metabolic functions in conditions of external oxygen deficit (in vivo experiments). It manifests itself in the capacity of cells to maintain the intracellular ATP concentration and transmembrane Na+ and K+ gradients within the norm at low activity of Na+, K+-ATPase and hexokinase. This phenomenon appears to be underlain by the reduction in the number of active plasma membrane ion channels diminishing energetic costs of cationic gradient maintenance (metabolic arrest phenomenon). The same is also evidenced by the rise in FDA and R123 fluorescence intensity in erythrocyte suspensions under hypoxia (in vitro experiments). The mechanisms underlying this phenomenon are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hochachka, P., Defence Strategies Against Hypoxia and Hypothermia, Science, 1986, vol. 231, pp. 324–241.

    Article  Google Scholar 

  2. Waarde, A., Biochemistry of Non-Protein Nitrogenous Compounds in Fish Including the Use of Amino Acids for Anaerobic Energy Production, Comp. Biochem. Physiol., 1988, vol. 91B, pp. 207–228.

    Google Scholar 

  3. Savina, M.V., Mekhanizmy adaptatsii tkanevogo dykhaniya v evolutsii pozvonochnykh (Adaptation Mechanisms of Tissue Respiration in Evolution of Vertebrates), Sankt-Petersburg, Nauka, 1992, 200 pp.

    Google Scholar 

  4. Shulman, G.E., Abolmasova, G.I., and Stolbov, A.Ya., Using the Protein in Energetic Exchange of Hydrobionts, Usp. Sovr. Biol., 1993, vol. 113, no. 5, pp. 576–586.

    CAS  Google Scholar 

  5. Chew, S.F., Gan, J., and Ip, Y.K., Nitrogen Metabolism and Excretion in the Swamp Eel, Monopterus albus, During 6 or 40 Days of Estivation in Mud, Physiol. Biochem. Zool., 2005, vol. 78, no. 4, pp. 620–629.

    Article  CAS  PubMed  Google Scholar 

  6. Wells, R.M.G., Blood-Gas Transport and Hemoglobin Function: Adaptations for Functional and Environmental Hypoxia, Fish Physiology, 2009, vol. 27, pp. 255–299.

    Article  Google Scholar 

  7. Lowe, T.E., Bril, R.W., and Cousins, K.L., Responses of the Red Blood Cells from Two High Energy-Demand Teleosts, Yellowfin Tuna (Thunnus albacares) and Skipjack Tuna (Katsuwonus pelamis), to Catecholamines, J. Comp. Physiol. B., 1998, vol. 168, no. 6, pp. 405–418.

    Article  CAS  PubMed  Google Scholar 

  8. Soldatov, A.A., Parfenova, I.A., and Novitskaya, V.N., Content of Monovalent Cations and ATP in Erythrocytes of Sea Fishes Under Experimental Hypoxia, Ukr. Biokhim. Zh., 2010, vol. 82, pp. 36–41.

    CAS  PubMed  Google Scholar 

  9. Novitskaya, V.N. and Soldatov, A.A., Hemolymph Erythroid Elements of Anadara inaequivalvis (Mollusca: Arcidae) Under Conditions of Experimental Anoxia: Functional and Morphometric Characteristics, Morsk. Ekol. Zh., 2011, vol. X, no. 1, pp. 56–64.

    Google Scholar 

  10. Soldatov, A.A., Physiological Aspects of Action of Uretane Anesthesia on Organism of Sea Fishes, Hidrobiol. Zh., 2003, vol. 39, no. 1, pp. 51–63.

    CAS  Google Scholar 

  11. Kochetov, G.A., Prakticheskoe rukovodstvo po enzimologii (Handbook on Enzymology), Moscow, Vysshaya shkola, 1980, 272 pp.

    Google Scholar 

  12. Tiihonen, K. and Nikinmaa, M., Short Communication: Substrate Utilization by Carp (Cyprinus carpio) Erythrocytes, J. Exp. Biol., 1991, vol. 161, pp. 509–514.

    CAS  Google Scholar 

  13. Bickler, P.E. and Buck, L.T.,, Hypoxia Tolerance in Reptiles, Amphibians, and Fishes: Life with Variable Oxygen Availability, Annu. Rev. Physiol., 2007, vol. 69, no. 2, pp. 145–170.

    Article  CAS  PubMed  Google Scholar 

  14. Bachand, L. and Leray, C., Erythrocyte Metabolism in the Yellow Perch. I. Glycolytic Enzymes, Comp. Biochem. Physiol., 1975, vol. 50B, no. 6, pp. 567–570.

    Google Scholar 

  15. Tufts, B.L. and Boutilier, R.G., Interactions Between Ion Exchange and Metabolism in Erythrocytes of the Rainbow Trout Oncorhynchus mykiss, J. Exp. Biol., 1991, vol. 231, no. 1, pp. 139–151.

    Google Scholar 

  16. Toescu, E.C. and Verkhratsky, A., Assessment of Mitochondrial Polarization Status in Living Cells Based on Analysis of the Spatial Heterogeneity of Rhodamine 123 Fluorescence Staining, Eur. J. Physiol., 2000, vol. 440, pp. 941–947.

    Article  CAS  Google Scholar 

  17. Wang, T., Zhang, Z.X., and Xu, Y.J., Effect of Mitochondrial KATP Channel on Voltage-Gated K+ Channel in 24 Hour-Hypoxic Human Pulmonary Artery Smooth Muscle Cells, Chinese Med. J-Peking, 2005, vol. 118, no. 1, pp. 12–19.

    CAS  Google Scholar 

  18. Weinberg, J.M., Venkatachalam, M.A., Roeser, N.F., and Nissim, I., Mitochondrial Dysfunction During Hypoxia and Reoxygenation and its Correction by Anaerobic Metabolism of Citric Acid Cycle Intermediates, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, no. 6, pp. 2826–2831.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Rus, A., Del Moral, M.L., and Molina, F., Upregulation of Cardiac NO/NOS System During Short-Term Hypoxia and the Subsequent Reoxygenation Period, Eur. J. Histochem., 2011, vol. 55, no. 2, pp. 91–96.

    Article  Google Scholar 

  20. Prosperi, E., Intracellular Turnover of Fluorescein Diacetate. Influence of Membrane Ionic Gradients on Fluorescein Efflux, Histochem. J., 1990, vol. 22, pp. 227–233.

    Article  CAS  PubMed  Google Scholar 

  21. Heslop-Harrison, J. and Heslop-Harrison, Y., Evaluation of Pollen Viability by Enzymatically Induced Fluorescence; Intracellular Hydrolysis of Fluorescein Diacetate, Stain Technol., 1970, vol. 45, no. 3, pp. 115–120.

    CAS  PubMed  Google Scholar 

  22. Baldisserotto, B., Chippari-Gomes, A.R., and Lopes, N.P., Ion Fluxes and Hematological Parameters of Two Teleosts from the Rio Negro, Amazon, Exposed to hypoxia, Braz. J. Biol., 2008, vol. 68, no. 3, pp. 571–575.

    Article  CAS  PubMed  Google Scholar 

  23. Soulier, P., Peyraud-Waitzenegger, M., and Peyraud, C., Respiratory and Cardiovascular Effects of Hypoxia in the European Eel, Arch. Int. Physiol., Biochem. et Biophys., 1991, vol. 99, no. 5, pp. 124–132.

    Google Scholar 

  24. Swift, D.I. and Lloyd, R., Changes in Urine Flow Rate and Hematocrit Value of Rainbow Trout Salmo gairdneri Exposed to Hypoxia, J. Fish Biol., 1974, vol. 6, no. 4, pp. 379–387.

    Article  Google Scholar 

  25. Edelman, I.S. and Fanestil, D.D., Mineralocorticoids, Biochem. Action of Hormones, vol. 1, New York, Acad., 1972, pp, 321–364.

    Google Scholar 

  26. Buck, L.T., Adenosine as a Signal for Ion Channel Arrest in Anoxia-Tolerant Organisms, Comp. Biochem. Physiol. B. Biochem. Mol. Biol., 2004, vol. 139, no. 3, pp. 401–414.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Soldatov.

Additional information

Original Russian Text © A.A. Soldatov, A.Yu. Andreeva, V.N. Novitskaya, I.A. Parfenova, 2014, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2014, Vol. 50, No. 5, pp. 358–363.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soldatov, A.A., Andreeva, A.Y., Novitskaya, V.N. et al. Coupling of membrane and metabolic functions in nucleated erythrocytes of Scorpaena porcus L. Under hypoxia in vivo and in vitro . J Evol Biochem Phys 50, 409–415 (2014). https://doi.org/10.1134/S0022093014050056

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093014050056

Key words

Navigation