Skip to main content
Log in

Production and Machining Performance Study of Nano Al2O3 Particle Reinforced LM25 Aluminum Alloy Composites

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The purpose of this study is to prepare specimens of 10 and 20%(wt.) nano Al2O3 particle reinforced LM25 metal matrix composites (MMCs) by stir casting. Another goal is to develop models using the response surface methodology (RSM) approach for predicting the surface roughness parameters and cutting force components during machining of the MMCs by a CBN7020 tool. With the help of the model developed, comparisons of 10 and 20%(wt.) nano Al2O3 particle reinforced LM25 MMCs are performed. Combined effects of three cutting parameters (cutting speed, feed rate, and depth of cut) on the surface roughness parameters and cutting force components are explored by using the analysis of variance (ANOVA). The resultant values of the parameters are found to agree well with available experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. A. Ansary, M. Montazerianb, H. Abdizadehb, and H. R. Baharvandic, “Microstructure and Mechanical Properties of Aluminium Alloy Matrix Composite Reinforced with Nanoparticle MgO,” J. Alloys Compounds 484 (1/2), 400–404 (2009).

    Google Scholar 

  2. J. Hashim, L. Looney, and M. S. J. Hashmi, “Metal Matrix Composites: Production by the Stir Casting Method,” J. Materials Process. Technol. 92/93, 1–7 (1999).

    Article  Google Scholar 

  3. M. Kok, “Production and Mechanical Properties of Al2O3 Particle-Reinforced 2024 Aluminium Alloy Composites,” J. Materials Process. Technol. 161 (3), 381–387 (2005).

    Article  Google Scholar 

  4. A. Mazaherya, H. Abdizadeha, and H. R. Baharvandib, “Development of High Performance A356/nano-Al2O3 Composites,” J. Material Sci. Eng. 518 (1/2), 61–64 (2009).

    Article  Google Scholar 

  5. S. Hai, G. Wenli, Z. Hui, et al., “Optimization of Stirring Parameters Through Numerical Simulation for the Preparation of Aluminum Matrix Composite by Stir Casting Process,” J. Manuf. Sci. Eng. 132 (6), 1–7 (2010).

    Google Scholar 

  6. M. H. Adel, A. Mohammed, Q. Tarek, and G. Ahmed, “Effect of Processing Parameters on Friction Stir Welding Aluminium Matrix Composites Wear Behavior,” Mater. Manuf. Processes 27 (12), 1419–1423 (2012).

    Article  Google Scholar 

  7. R. S. Rana, P. Rajesh, and S. Das, “Review of Recent Studies in Al Matrix Composites,” Sci. Eng. Res. 3 (6), 1–16 (2012).

    Google Scholar 

  8. E. Kilickap, O. Cakir, M. Aksoy, and A. Inan, “Study of Tool Wear and Surface Roughness in Machining of Homogenised SiC-p Reinforced Aluminium Metal Matrix Composite,” J. Mater. Process. Technol. 164/165, 862–867 (2005).

    Article  Google Scholar 

  9. S. T. Mileiko, “High-Temperature Metal Matrix Composites,” Prikl. Mekh. Tekh. Fiz. 55 (1), 166–178 (2014) [J. Appl. Mech. Tech. Phys. 55 (1), 136–146 (2014)].

    MathSciNet  Google Scholar 

  10. F. Farhadinia, A. Sedghi, and M. T. Nooghani, “Properties of an Al/(Al2O3+TiB2+ZrB2) Hybrid Composite Manufactured by Powder Metallurgy and Hot Pressing,” Prikl. Mekh. Tekh. Fiz. 58 (3), 90–97 (2017) [J. Appl. Mech. Tech. Phys. 58 (3), 454–460 (2017)].

    Google Scholar 

  11. K. Palanikumar and R. Karthikeyan, “Assessment of Factors Influencing Surface Roughness on the Machining of Al/SiC Particulate Composites,” J. Mater. Design 28 (5), 1584–1591 (2007).

    Article  Google Scholar 

  12. K. T. Chiang, “Modeling and Analysis of the Effects of Machining Parameters on the Performance Characteristics in the EDM Process of Al2O3 + TiC Mixed Ceramic,” Int. J. Adv. Manuf. Technol. 37 (5/6), 523–533 (2008).

    Article  Google Scholar 

  13. A. D. Uday, A. S. Harshad, and S. J. Suhas, “Cutting Forces and Surface Roughness in Machining Al/SiCp Composites of Varying Composition,” Mater. Sci. Technol. 14 (2), 258–274 (2010).

    Google Scholar 

  14. S. M. Suresh, M. Debadutta, A. Srinivasan, et al., “Production and Characterization of Micro and Nano AlO Particle-Reinforced LM25 Aluminium Alloy Composites,” ARPN J. Eng. Appl. Sci. 6 (6), 94–98 (2011).

    Google Scholar 

  15. R. M. Arunachalam, S. Ramesh, and J. S. Senthilkumar, “Machining Performance Study on Metal Matrix Composites-A Response Surface Methodology Approach,” Amer. J. Appl. Sci. 9 (4), 478–483 (2012).

    Article  Google Scholar 

  16. A. T. Mohamed, A. E. Nahed, and M. E. Ahme, “Some Experimental Data on Workability of Aluminium-Particulate-Reinforced Metal Matrix Composites,” J. Mater. Process. Technol. 202, 1–3 (2008).

    Article  Google Scholar 

  17. K. B. Rajesh, K. Sudhir, and S. Das, “Effect of Machining Parameters on Surface Roughness and Tool Wear for 7075 Al Alloy SiC Composite,” Int. J. Adv. Manuf. Technol. 50 (5–8), 459–469 (2010).

    Google Scholar 

  18. R. D. Chinmaya and C. S. Yung, “Modeling of Machining of Composite Materials: A Review,” Int. J. Mach. Tools Manuf. 57, 102–121 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. Thankachan.

Additional information

Original Russian Text © T.P. Thankachan.

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 60, No. 1, pp. 157–166, January–February, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thankachan, T.P. Production and Machining Performance Study of Nano Al2O3 Particle Reinforced LM25 Aluminum Alloy Composites. J Appl Mech Tech Phy 60, 136–143 (2019). https://doi.org/10.1134/S0021894419010176

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894419010176

Keywords

Navigation