Skip to main content
Log in

Aharonov–Bohm Interferometry Based on Helical Edge States (Brief Review)

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

We review recent studies of the spin-dependent tunneling transport via an Aharonov–Bohm interferometer (ABI) formed by helical edge states. We focus on the experimentally relevant case of relatively high temperature, T, as compared to level spacing, Δ. The tunneling conductance of helical ABI is structureless in ballistic case but shows sharp periodic antiresonances as a function of magnetic flux with the period \(hc{\text{/}}2e\) in presence of magnetic impurities. The incoming unpolarized electron beam acquires finite polarization after transmission through the helical ABI provided that the edges contain at least one magnetic impurity. The finite polarization appears even in the fully classical regime and is therefore robust to dephasing. There is also a quantum contribution to the polarization, which shows sharp identical resonances as a function of magnetic flux with the same period as conductance. This polarization survives at relatively high temperature. The interferometer can be described in terms of ensemble of \(\mathcal{N} \simeq T{\text{/}}\Delta \) flux-tunable qubits giving equal contributions to conductance and spin polarization. Hence, with increasing the temperature number of active qubits participating in the charge and spin transport increases. These features of tunneling helical ABI open a wide avenue for applications in the area of quantum computing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge Univ. Press, Cambridge, 1997).

    Book  Google Scholar 

  2. P. Hariharan, Basics of Interferometry (Elsevier, Amsterdam, 2007).

    Google Scholar 

  3. R. Demkowicz-Dobrzański, M. Jarzyna, and J. Kolodyński, in Progress in Optics (Elsevier, Amsterdam, 2015), p. 345.

    MATH  Google Scholar 

  4. J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, Rev. Mod. Phys. 84, 777 (2012).

    Article  ADS  Google Scholar 

  5. D. H. Boal, C.-K. Gelbke, and B. K. Jennings, Rev. Mod. Phys. 62, 553 (1990).

    Article  ADS  Google Scholar 

  6. A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, Rev. Mod. Phys. 81, 1051 (2009).

    Article  ADS  Google Scholar 

  7. A. J. Uzan, H. Soifer, O. Pedatzur, A. Clergerie, S. Larroque, B. D. Bruner, B. Pons, M. Ivanov, O. Smirnova, and N. Dudovich, Nat. Photon. 14, 188 (2020).

    Article  ADS  Google Scholar 

  8. D. Becker, M. D. Lachmann, S. T. Seidel, et al., Nature (London, U.K.) 562, 391 (2018).

    Article  ADS  Google Scholar 

  9. A. Danner, B. Demirel, W. Kersten, H. Lemmel, R. Wagner, S. Sponar, and Y. Hasegawa, npj Quantum Inf. 6, 23 (2020).

  10. B. Yin, Z. Piao, K. Nishimiya, C. Hyun, J. A. Gardecki, A. Mauskapf, F. A. Jaffer, and G. J. Tearney, Light Sci. Appl. 8, 104 (2019).

    Article  ADS  Google Scholar 

  11. H. Spahr, C. Pfäffle, S. Burhan, L. Kutzner, F. Hilge, G. Hüttmann, and D. Hillmann, Sci. Rep. 9, 11748 (2019).

    Article  ADS  Google Scholar 

  12. S. Shevchenko, S. Ashhab, and F. Nori, Phys. Rep. 492, 1 (2010).

    Article  ADS  Google Scholar 

  13. Z. Wang, W.-C. Huang, Q.-F. Liang, and X. Hu, Sci. Rep. 8, 7920 (2018).

    Article  ADS  Google Scholar 

  14. Y. Matyushkin, S. Danilov, M. Moskotin, V. Belosevich, N. Kaurova, M. Rybin, E. D. Obraztsova, G. Fedorov, I. Gorbenko, V. Kachorovskii, and S. Ganichev, Nano Lett. 20, 7296 (2020).

    Article  ADS  Google Scholar 

  15. S. K. Saha, Rev. Mod. Phys. 74, 551 (2002).

    Article  ADS  Google Scholar 

  16. K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, Nat. Phys. 4, 472 (2008).

    Article  Google Scholar 

  17. R. X. Adhikari, Rev. Mod. Phys. 86, 121 (2014).

    Article  ADS  Google Scholar 

  18. S. Sala, A. Ariga, A. Ereditato, R. Ferragut, M. Giammarchi, M. Leone, C. Pistillo, and P. Scampoli, Sci. Adv. 5, eaav7610 (2019).

  19. Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  20. A. G. Aronov and Y. V. Sharvin, Rev. Mod. Phys. 59, 755 (1987).

    Article  ADS  Google Scholar 

  21. M. Büttiker, Y. Imry, and M. Y. Azbel, Phys. Rev. A 30, 1982 (1984).

    Article  ADS  Google Scholar 

  22. Y. Gefen, Y. Imry, and M. Y. Azbel, Phys. Rev. Lett. 52, 129 (1984).

    Article  ADS  Google Scholar 

  23. M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B 31, 6207 (1985).

    Article  ADS  Google Scholar 

  24. J. M. Kinaret, M. Jonson, R. I. Shekhter, and S. Eggert, Phys. Rev. B 57, 3777 (1998).

    Article  ADS  Google Scholar 

  25. E. A. Jagla and C. A. Balseiro, Phys. Rev. Lett. 70, 639 (1993).

    Article  ADS  Google Scholar 

  26. A. P. Dmitriev, I. V. Gornyi, V. Y. Kachorovskii, and D. G. Polyakov, Phys. Rev. Lett. 105, 036402 (2010).

  27. P. M. Shmakov, A. P. Dmitriev, and V. Y. Kachorovskii, Phys. Rev. B 87, 235417 (2013).

  28. A. P. Dmitriev, I. V. Gornyi, V. Y. Kachorovskii, D. G. Polyakov, and P. M. Shmakov, JETP Lett. 100, 839 (2015).

    Article  ADS  Google Scholar 

  29. A. P. Dmitriev, I. V. Gornyi, V. Y. Kachorovskii, and D. G. Polyakov, Phys. Rev. B 96, 115417 (2017).

  30. P. M. Shmakov, A. P. Dmitriev, and V. Y. Kachorovskii, Phys. Rev. B 85, 075422 (2012).

  31. A. P. Dmitriev, I. V. Gornyi, V. Yu. Kachorovskii, and D. G. Polyakov, arXiv: 0911.0911.

  32. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).

  33. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).

  34. B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science (Washington, DC, U. S.) 314, 1757 (2006).

    Article  ADS  Google Scholar 

  35. M. König, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science (Washington, DC, U. S.) 318, 766 (2007).

    Article  ADS  Google Scholar 

  36. A. Roth, C. Brüne, H. Buhmann, L. W. Molenkamp, J. Maciejko, X.-L. Qi, and S.-C. Zhang, Science (Washington, DC, U. S.) 325, 294 (2009).

    Article  ADS  Google Scholar 

  37. G. M. Gusev, Z. D. Kvon, O. A. Shegai, N. N. Mikhailov, S. A. Dvoretsky, and J. C. Portal, Phys. Rev. B 84, 121302 (2011).

  38. C. Brüne, A. Roth, H. Buhmann, E. M. Hankiewicz, L. W. Molenkamp, J. Maciejko, X.-L. Qi, and S.‑C. Zhang, Nat. Phys. 8, 485 (2012).

    Article  Google Scholar 

  39. A. Kononov, S. V. Egorov, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, and E. V. Deviatov, JETP Lett. 101, 814 (2015).

    Article  ADS  Google Scholar 

  40. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  Google Scholar 

  41. X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

    Article  ADS  Google Scholar 

  42. R.-L. Chu, J. Li, J. K. Jain, and S.-Q. Shen, Phys. Rev. B 80, 081102 (2009).

  43. S. Masuda and Y. Kuramoto, Phys. Rev. B 85, 195327 (2012).

  44. P. Dutta, A. Saha, and A. M. Jayannavar, Phys. Rev. B 94, 195414 (2016).

  45. J. Maciejko, E.-A. Kim, and X.-L. Qi, Phys. Rev. B 82, 195409 (2010).

  46. I. Knez, R.-R. Du, and G. Sullivan, Phys. Rev. Lett. 107, 136603 (2011).

  47. S. Wu, V. Fatemi, Q. D. Gibson, K. Watanabe, T. Taniguchi, R. J. Cava, and P. Jarillo-Herrero, Science (Washington, DC, U. S.) 359, 76 (2018).

    Article  ADS  Google Scholar 

  48. F. Reis, G. Li, L. Dudy, M. Bauernfeind, S. Glass, W. Hanke, R. Thomale, J. Schäfer, and R. Claessen, Science (Washington, DC, U. S.) 357, 287 (2017).

    Article  ADS  Google Scholar 

  49. G. Li, W. Hanke, E. M. Hankiewicz, F. Reis, J. Schäfer, R. Claessen, C. Wu, and R. Thomale, Phys. Rev. B 98, 165146 (2018).

  50. R. Stühler, F. Reis, T. Müller, T. Helbig, T. Schwemmer, R. Thomale, J. Schäfer, and R. Claessen, Nat. Phys. 16, 47 (2020).

    Article  Google Scholar 

  51. L. Du, I. Knez, G. Sullivan, and R.-R. Du, Phys. Rev. Lett. 114, 096802 (2015).

  52. S.-B. Zhang, Y.-Y. Zhang, and S.-Q. Shen, Phys. Rev. B 90, 115305 (2014).

  53. L.-H. Hu, D.-H. Xu, F.-C. Zhang, and Y. Zhou, Phys. Rev. B 94, 085306 (2016).

  54. X.-T. An, Y.-Y. Zhang, J.-J. Liu, and S.-S. Li, New J. Phys. 14, 083039 (2012).

  55. X.-T. An, Y.-Y. Zhang, J.-J. Liu, and S.-S. Li, J. Phys.: Condens. Matter 24, 505602 (2012).

  56. P. Michetti and P. Recher, Phys. Rev. B 83, 125420 (2011).

  57. R. Battilomo, N. Scopigno, and C. Ortix, Phys. Rev. B 98, 075147 (2018).

  58. M. Zare, J. Magn. Magn. Mater. 492, 165605 (2019).

  59. R. A. Niyazov, D. N. Aristov, and V. Y. Kachorovskii, npj Comput. Mater. 6, 174 (2020).

    Google Scholar 

  60. P. D. Kurilovich, V. D. Kurilovich, I. S. Burmistrov, and M. Goldstein, JETP Lett. 106, 593 (2017).

    Article  ADS  Google Scholar 

  61. R. A. Niyazov, D. N. Aristov, and V. Y. Kachorovskii, Phys. Rev. B 98, 045418 (2018).

  62. M. V. Berry, Proc. R. Soc. London, Ser. A 392, 45 (1984).

    Article  ADS  Google Scholar 

  63. P. D. Kurilovich, V. D. Kurilovich, and I. S. Burmistrov, Phys. Rev. B 94, 155408 (2016).

  64. V. D. Kurilovich, P. D. Kurilovich, and I. S. Burmistrov, Phys. Rev. B 95, 115430 (2017).

  65. R. A. Niyazov, D. N. Aristov, and V. Y. Kachorovskii, Phys. Rev. B 103, 125428 (2021).

  66. J. Ziegler, R. Kozlovsky, C. Gorini, M.-H. Liu, S. Weishäupl, H. Maier, R. Fischer, D. A. Kozlov, Z. D. Kvon, N. Mikhailov, S. A. Dvoretsky, K. Richter, and D. Weiss, Phys. Rev. B 97, 035157 (2018).

  67. M. L. Savchenko, D. A. Kozlov, N. N. Vasilev, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, and A. V. Kolesnikov, Phys. Rev. B 99, 195423 (2019).

  68. P. Földi, B. Molnár, M. G. Benedict, and F. M. Peeters, Phys. Rev. B 71, 033309 (2005).

  69. C. Bäuerle, D. Christian Glattli, T. Meunier, F. Portier, P. Roche, P. Roulleau, S. Takada, and X. Waintal, Rep. Prog. Phys. 81, 056503 (2018).

  70. H. Maier, J. Ziegler, R. Fischer, D. Kozlov, Z. D. Kvon, N. Mikhailov, S. A. Dvoretsky, and D. Weiss, Nat. Commun. 8, 2023 (2017).

    Article  ADS  Google Scholar 

Download references

Funding

R. Niyazov acknowledges the support of the Russian Foundation for Basic Research, project no. 19-32-60077. D. Aristov and V. Kachorovskii acknowledge the support of the Russian Foundation for Basic Research, project no. 20-02-00490. R. Niyazov and V. Kachorovskii acknowledge the support of the Foundation for the Advancement of Theoretical Physics and Mathematics BASIS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Niyazov.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niyazov, R.A., Aristov, D.N. & Kachorovskii, V.Y. Aharonov–Bohm Interferometry Based on Helical Edge States (Brief Review). Jetp Lett. 113, 689–700 (2021). https://doi.org/10.1134/S0021364021110035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021110035

Navigation